23st Annual CMC ${ }^{3}$ Recreational Math Conference
Lake Tahoe Community College, April 26-27, 2019

Power-spectral Numbers

> by

Walter A. Kehowski, Ph.D.
Glendale Community College, AZ 85302
walter.kehowski@gccaz.edu

Introduction, 1/3

Recall that modular arithmetic in Z_{12} is the set of equivalence classes of remainders modulo 12 endowed with operations of addition, subtraction, multiplication and, when possible, division. For example, it is easy to see that

$$
\begin{aligned}
8+9 & =5 \\
5 \cdot 7 & =1, \\
2 \cdot 6 & =0, \quad 3 \cdot 4=0 .
\end{aligned}
$$

Consider

$$
2^{57}=8
$$

But what about 2^{57} ? Since $2^{2}=4,2^{3}=8,2^{4}=4, \ldots$, it is clear that $2^{\text {even }}=4$ and $2^{\text {odd }}=8$. Is there any way that operations in Z_{12} can be "simplified"?

Introduction, 2/3

Spectral basis: $\{9,4\}$. Index=1.

Introduction, 3/3

Observe that, in \mathbf{Z}_{12}, we have

$$
\begin{array}{r}
9+4=1 \\
9 \cdot 4=0 \\
9^{2}=9 \\
4^{2}=4
\end{array}
$$

Furthermore, any $x \in \mathbf{Z}_{12}$ can be uniquely decomposed as

$$
x=(x \bmod 4) \cdot 9+(x \bmod 3) \cdot 4,
$$

and

$$
x^{r}=\left(x^{r} \bmod 4\right) \cdot 9+\left(x^{r} \bmod 3\right) \cdot 4
$$

for all positive integers r. If x is invertible, then r can be negative as well.

The Spectral Basis Theorem

The elements 9 and 4 in \mathbf{Z}_{12} comprise what is called the spectral basis for \mathbf{Z}_{12}, or for convenience, the spectral basis of 12 . It is a fact that any integer n with at least two prime factors has a spectral basis.

Theorem 1

Let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}, k>1$, be a positive integer with at least two prime factors. Then there exist elements $s_{1}, s_{2}, \ldots, s_{k}$ of \mathbf{Z}_{n} with the following properties:

$$
\begin{align*}
s_{1} & +s_{2}+\cdots+s_{k}=1 \tag{1}\\
s_{i}^{2} & =s_{i}, 1 \leq i \leq k \tag{2}\\
s_{i} s_{j} & =0, i \neq j \tag{3}\\
x & =\left(x^{r} \bmod p_{1}^{e_{1}}\right) \cdot s_{1}+\cdots+\left(x^{r} \bmod p_{k}^{e_{k}}\right) \cdot s_{k},(r \geq 0) \tag{4}
\end{align*}
$$

We call $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ the spectral basis of \mathbf{Z}_{n}, or, for convenience, the spectral basis of n.

Proof of the Spectral Basis Theorem, 1/2

- Define the map $\psi: \mathbf{Z} \rightarrow M, M:=\mathbf{Z}_{p_{1}^{e_{1}}} \oplus \mathbf{Z}_{p_{2}^{e_{2}}} \oplus \cdots \oplus \mathbf{Z}_{p_{k}^{e_{k}}}$, by

$$
\psi(x)=\left(\psi_{1}(x), \psi_{2}(x), \ldots, \psi_{k}(x)\right), \quad \psi_{i}(x)=x \bmod p_{i}^{e_{i}} .
$$

- Let us first find the image of ψ. Given $y=\left(\bar{y}_{1}, \ldots, \bar{y}_{k}\right)$, there exists $x \in \mathbf{Z}$ such that $\psi(x)=y$ if and only if $x \equiv \bar{y}_{i} \bmod p_{i}^{e_{i}}$ for all $i=1 \ldots, k$. Since the primary factors of n are pairwise relatively prime, by the Chinese Remainder Theorem the system of congruences has a solution, and so ψ is a ring epimorphism.
- Next, let us find the kernel of ψ. The kernel is all $x \in \mathrm{Z}$ such that $x \equiv 0 \bmod p_{i}^{e_{i}}$ for all i, that is, if and only if x is divisible by $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$. Consequently, the kernel of ψ is the ideal $n \mathbf{Z}$ and the induced map $\bar{\psi}: \mathbf{Z} / n \mathbf{Z} \rightarrow M$ is an isomorphism.

Proof of the Spectral Basis Theorem, 2/2

The direct sum $M:=\mathbf{Z}_{p_{1}^{e_{1}}} \oplus \mathbf{Z}_{p_{2}^{e_{2}}} \oplus \cdots \oplus \mathbf{Z}_{p_{k}^{e_{k}}}$, has canonical projections $\pi_{i}: M \rightarrow \mathbf{Z}_{p_{i}}{ }_{i}$ given by $\pi_{i}\left(n_{1}, \ldots, n_{k}\right)=n_{i}$ that satisfy

$$
\begin{aligned}
\pi_{1}+\cdots+\pi_{k} & =\mathrm{Id}, \\
\pi_{i}^{2} & =\pi_{i}, \\
\pi_{i} \pi_{j} & =0,(i \neq j) .
\end{aligned}
$$

What elements s_{i} of \mathbf{Z}_{n} correspond to the projections π_{i} of M ? Define $h_{i}:=n / p_{i}^{e_{i}}$. Since h_{1}, \ldots, h_{k} are pairwise relatively prime, there exists integers a_{1}, \ldots, a_{k} in \mathbf{Z}_{n} such that

$$
a_{1} h_{1}+\cdots+a_{k} h_{k}=1 \quad \text { in } \mathbf{Z}_{n}
$$

It can be shown that

$$
s_{i}:=a_{i} h_{i}=\left(h_{i}^{-1} \quad \bmod p_{i}^{e_{i}}\right) h_{i}
$$

have the properties

$$
\begin{aligned}
s_{1}+\cdots+s_{k} & =1 \\
s_{i}^{2} & =s_{i} \\
s_{i} s_{j} & =0,(i \neq j)
\end{aligned}
$$

Power-spectral numbers

Definition 2
A positive integer is power-spectral if its spectral basis consists of primes or powers.

Examples 3

1. $\{3,4\}$ is the spectral basis for 6 .
2. $\{9,4\}$ is the spectral basis for 12 .
3. $\{7,8\}$ is the spectral basis for 14 .
4. $\{9,16\}$ is the spectral basis for 24 .
5. $\left\{15^{2}, 2^{6}\right\}$ is the spectral basis for $288=(2)^{5}(3)^{2}$.
6. $\left\{15^{2}, 20^{2}, 24^{2}\right\}$ is the spectral basis for $600=(2)^{3}(3)(5)^{2}$.

Mersenne I, 1/2

Theorem 4
The number $2 p^{k}$ has spectral basis $\left\{p^{k}, p^{k}+1\right\}$.
Corollary 5
The number $2 M_{p}$ has spectral basis $\left\{M_{p}, 2^{p}\right\}$.

Examples 6

1. $\left\{3,2^{2}\right\}$ is the spectral basis for $2 \cdot 3$.
2. $\left\{7,2^{3}\right\}$ is the spectral basis for $2 \cdot 7$.
3. $\left\{31,2^{5}\right\}$ is the spectral basis for $2 \cdot 31$.
4. $\left\{127,2^{7}\right\}$ is the spectral basis for $2 \cdot 127$.

Mersenne I, 2/2

Theorem 7
Let M_{p} be a Mersenne prime with Mersenne exponent p. Then the following numbers are power-spectral.

1. $2 M_{p}$ has spectral basis $\left\{M_{p}, 2^{p}\right\}$ or, equivalently, $\left\{M_{p}, M_{p}+1\right\}$.
2. $2^{p} M_{p}$ has spectral basis $\left\{M_{p}^{2}, 2^{p}\right\}$ or, equivalently, $\left\{M_{p}^{2}, M_{p}+1\right\}$.
3. $2^{p+1} M_{p}$ has spectral basis $\left\{M_{p}^{2}, 2^{2 p}\right\}$ or, equivalently, $\left\{M_{p}^{2},\left(M_{p}+1\right)^{2}\right\}$
4. $2^{2 p+1} M_{p}^{2}$ has spectral basis $\left\{M_{p}^{2}\left(M_{p}+2\right)^{2},\left(M_{p}^{2}-1\right)^{2}\right\}$.

Fermat I, 1/1

It is easily shown that $2^{a}+1$ can be prime if and only if a is a power of 2 . The number $F_{i}=2^{2^{i}}+1, i \geq 0$, is called a Fermat number and a Fermat prime when it is prime. The only known Fermat primes are $F_{0}=3, F_{1}=5, F_{2}=17, F_{3}=257, F_{4}=65537$.
Theorem 8
If $F_{i}=2^{f_{i}}+1$ is a Fermat prime with exponent $f_{i}=2^{i}, i \geq 0$, then

1. $2^{f_{i}} F_{i}$ has spectral basis $\left\{F_{i}, 2^{2 f_{i}}\right\}$.
2. $2^{f_{i}+1} F_{i}$ has spectral basis $\left\{F_{i}^{2}, 2^{2 f_{i}}\right\}$.
3. $2^{2 f_{i}+1} F_{i}^{2}$ has spectral basis $\left\{\left(F_{i}-2\right)^{2} F_{i}^{2},\left(F_{i}^{2}-1\right)^{2}\right\}$.

Cyclotomic primes, 1/3

Consider the number $20439=3^{3} \cdot 757$. Let us verify that $\left\{757,3^{9}\right\}$ is the spectral basis for 20439. Clearly, $757+3^{9}=20440 \equiv 1 \bmod 20439$ and $757 \cdot 3^{9} \equiv 0 \bmod 20439$. Further,

$$
\begin{aligned}
757^{2}-757 & =757 \cdot 756=757 \cdot 2^{2} \cdot 3^{3} \cdot 7 \\
& =2^{2} \cdot 7 \cdot\left(3^{3} \cdot 757\right) \equiv 0 \quad \bmod 20439 . \\
\left(3^{9}\right)^{2}-3^{9} & =3^{9}\left(3^{9}-1\right)=3^{9} \cdot 2 \cdot 13 \cdot 757 \\
& =2 \cdot 3^{6} \cdot 13 \cdot\left(3^{3} \cdot 757\right) \equiv 0 \quad \bmod 20439 .
\end{aligned}
$$

Are 757 and 3^{9} related? The key is the decomposition of the identity.

Cyclotomic primes, 2/3

$$
\begin{aligned}
757+3^{9} & =3^{3} \cdot 757+1 \\
3^{9}-1 & =3^{3} \cdot 757-757 \\
3^{9}-1 & =\left(3^{3}-1\right)(757) \\
757 & =\frac{3^{9}-1}{3^{3}-1}
\end{aligned}
$$

Definition 9

The number $\Phi_{r^{e}}(p)=\frac{p^{r^{e}}-1}{p^{r^{e-1}}-1}$, where p and r are primes and $e \geq 1$, when prime, is called a cyclotomic prime.
NOTE: $\Phi_{r^{e}}(x)=\frac{x^{r^{e}}-1}{x^{r^{e-1}}-1}$ can be prime when x is composite but we are only interested in the case when x is prime.

Cyclotomic primes, 3/3

Theorem 10
The number $p^{r^{e-1}} \Phi_{r^{e}}(p)$ has spectral basis $\left\{\Phi_{r^{e}}(p), p^{r^{e}}\right\}$, where $\Phi_{r^{e}}(p)$ is a cyclotomic prime.

Proof.

The decomposition of the identity follows from the requirement that $\Phi_{r^{e}}(p)$ is prime. Let's verify the projection property for $q=\Phi_{r^{e}}(p)$. Observe that

$$
\begin{aligned}
q^{2}-q & =q(q-1)=q\left(\frac{p^{r^{e}}-1}{p^{r^{e-1}}-1}-1\right) \\
& =q\left(\frac{p^{r^{e}}-p^{r^{e-1}}}{p^{r^{e-1}}-1}\right) \\
& =p^{r^{e-1}} q\left(\frac{p^{r^{e}-r^{e-1}}-1}{p^{r^{e-1}}-1}\right) \\
& \equiv 0 \bmod p^{r^{e-1}} q .
\end{aligned}
$$

Exercise: $\left(p^{r^{e}}\right)^{2} \equiv p^{r^{e}} \bmod p^{r^{e-1}} q$.

Power-spectral numbers $9 p^{2 s} q^{2 t}, 1 / 3$

Of natural interest are primes solutions to $q^{t}=2 p^{s} \pm 1$ with $s, t \geq 1$. For example, Sophie-Germain primes are primes of the form $q=2 p+1$ and Cunningham primes are of the form $q=2 p-1$. It is open question whether or not there are infinitely many primes of the form $q=2 p \pm 1$.
Theorem 11 (Pell equation)
The equations $x^{2}-2 y^{2}= \pm 1$ have infinitely many integer solutions. The only prime solution to $x^{2}-2 y^{2}=1$ is $(x, y)=(3,2)$. The only prime solutions to $x^{2}-2 y^{2}=-1$ known so far are

$$
\begin{aligned}
(7)^{2} & =2(5)^{2}-1 \\
(41)^{2} & =2(29)^{2}-1 \\
(63018038201)^{2} & =2(44560482149)^{2}-1
\end{aligned}
$$

$(19175002942688032928599)^{2}=2(13558774610046711780701)^{2}-1$

Power-spectral numbers $9 p^{2 s} q^{2 t}, 2 / 3$

Theorem 12 (Ljjungren, 1942)
The only positive integer solutions to $y^{2}=2 x^{4}-1$ are $(x, y)=(1,1)$ and $(13,239)$, and the only prime solution is $(13,239)$.

Theorem 13 (Crescenzo, 1975)
The only solutions to $q^{t}=2 p^{s} \pm 1, s, t>1$, for primes p and q occur only for $(s, t)=(2,2)$ and $(4,2)$.

Theorem 14 (Solutions to $q^{t}=2 p^{s} \pm 1$)
The only prime solutions to $q^{t}=2 p^{s} \pm 1, s, t \geq 1$, occur for $(s, 1)$, $(1, t),(2,2)$, and $(4,2)$.

Power-spectral numbers $9 p^{2 s} q^{2 t}, 3 / 3$

Theorem 15
Suppose $q^{t}=2 p^{s} \pm 1$ has prime solutions, $p, q \neq 3$, for some positive integers s and t. Then $9 p^{2 s} q^{2 t}$ has spectral basis

$$
\left\{p^{2 s} q^{2 t}, 4\left(p^{2 s}-1\right)^{2}, 16\left(p^{2} \pm 1\right) p^{2 s}\right\}
$$

Definition 16 (Ljjungren's number)
Ljjungren's number is defined to be the power-spectral number

$$
3^{2}(13)^{8}(239)^{4}=23954159206871641449
$$

It is the unique power-spectral number of the form $9 p^{8} q^{4}$ where p and q are prime.

Mersenne II, 1/2

Theorem 17
Let M_{p} is a Mersenne prime with Mersenne exponent $p>2$. Then

1. $2^{2 p-1} \cdot 3 \cdot M_{p}^{2}$ has power-spectral basis

$$
\left\{M_{p}^{2}\left(M_{p}+2\right)^{2}, M_{p}^{2}\left(M_{p}+1\right)^{2},\left(M_{p}^{2}-1\right)^{2}\right\}
$$

of index 2.
2. $2^{2 p} \cdot 3 \cdot M_{p}^{2}$ has power-spectral basis

$$
\left\{M_{p}^{2}\left(M_{p}+2\right)^{2}, M_{p}^{2}\left(M_{p}+1\right)^{2},\left(M_{p}^{2}-1\right)^{2}\right\} .
$$

3. $2^{2 p+1} \cdot 3 \cdot M_{p}^{2}$ has power-spectral basis

$$
\left\{M_{p}^{2}\left(M_{p}+2\right)^{2}, 4 M_{p}^{2}\left(M_{p}+1\right)^{2},\left(M_{p}^{2}-1\right)^{2}\right\}
$$

The numbers 1 and 2 comprise an isospectral pair. See 22.

Mersenne II, 1/2

Theorem 18

Let M_{p} be a Mersenne prime with Mersenne exponent $p>2$. Then

1. $2^{2 p-3} \cdot 3^{2} \cdot M_{p}^{2}$ has power-spectral basis

$$
\left\{M_{p}^{2}\left(M_{p}+2\right)^{2}, \frac{1}{4} M_{p}^{2}\left(M_{p}+1\right)^{2},\left(M_{p}^{2}-1\right)^{2}\right\}
$$

of index 2.
2. $2^{2 p-2} \cdot 3^{2} \cdot M_{p}^{2}$ has power-spectral basis

$$
\left\{M_{p}^{2}\left(M_{p}+2\right)^{2}, \frac{1}{4} M_{p}^{2}\left(M_{p}+1\right)^{2},\left(M_{p}^{2}-1\right)^{2}\right\} .
$$

3. $2^{2 p+1} \cdot 3^{2} \cdot M_{p}^{2}$ has power-spectral basis

$$
\left\{M_{p}^{2}\left(M_{p}+2\right)^{2}, 16 M_{p}^{2}\left(M_{p}+1\right)^{2},\left(M_{p}^{2}-1\right)^{2}\right\} .
$$

Furthermore, the numbers 1 and 2 comprise an isospectral pair. See 22.

Fermat II, 1/2

Theorem 19

Let F_{i} be a Fermat prime with exponent $f_{i}=2^{i}$. Then the following numbers are power-spectral.

1. $2^{2 f_{i}-1} \cdot 3 \cdot F_{i}^{2}$ has power-spectral basis

$$
\left\{\left(F_{i}-2\right)^{2} F_{i}^{2},\left(F_{i}-1\right)^{2} \cdot F_{i}^{2},\left(F_{i}^{2}-1\right)^{2}\right\}
$$

with index 2.
2. $2^{2 f_{i}} \cdot 3 \cdot F_{i}^{2}$ has power-spectral basis

$$
\left\{\left(F_{i}-2\right)^{2} F_{i}^{2},\left(F_{i}-1\right)^{2} F_{i}^{2},\left(F_{i}^{2}-1\right)^{2}\right\} .
$$

3. $2^{2 f_{i}+1} \cdot 3 \cdot F_{i}^{2}$ has power-spectral basis

$$
\left\{\left(F_{i}-2\right)^{2} F_{i}^{2}, 4\left(F_{i}-1\right)^{2} \cdot F_{i}^{2},\left(F_{i}^{2}-1\right)^{2}\right\} .
$$

Furthermore, 1 and 2 form an isospectral pair. See 22.

Fermat II, 2/2

Theorem 20

Let F_{i} be a Fermat prime with Fermat exponent $f_{i}=2^{i}$. Then

1. $2^{3} \cdot 9 \cdot 5^{2}$ has power-spectral basis

$$
\left\{3^{2} 5^{2}, 2^{3} 5^{3}, 2^{6} 3^{2}\right\}
$$

2. $2^{2 f_{i}-3} \cdot 9 \cdot F_{i}^{2}$ has power-spectral basis

$$
\left\{\left(F_{i}-2\right)^{2} F_{i}^{2}, \frac{1}{4}\left(F_{i}-1\right)^{2} F_{i}^{2},\left(F_{i}^{2}-1\right)^{2}\right\}
$$

with index 2.
3. $2^{2 f_{i}-2} \cdot 9 \cdot F_{i}^{2}$ has power-spectral basis

$$
\left\{\left(F_{i}-2\right)^{2} F_{i}^{2}, \frac{1}{4}\left(F_{i}-1\right)^{2} F_{i}^{2},\left(F_{i}^{2}-1\right)^{2}\right\} .
$$

4. $2^{2 f_{i}+1} \cdot 9 \cdot F_{i}^{2}$, has power-spectral basis

$$
\left\{\left(F_{i}-2\right)^{2} F_{i}^{2}, 16\left(F_{i}-1\right)^{2} F_{i}^{2},\left(F_{i}^{2}-1\right)^{2}\right\} .
$$

Furthermore, the numbers of Theorem 2 and Theorem 3 form an isospectral pair for $i=2,3,4$. See 22.

Isospectral chains, $1 / 3$

The pair $\{84,42\}$ both have the same spectral basis, namely, $\{21,28,36\}$. Two numbers will be called isospectral if they have the same spectral basis. Let's look at the decomposition of the identity.

$$
\begin{aligned}
& 21+28+36=2 \cdot 42+1 \equiv 1 \quad \bmod 42 \\
& 21+28+36=1 \cdot 84+1 \equiv 1 \quad \bmod 84
\end{aligned}
$$

We say that 42 has index 2 and that 84 has index 1 and that $\{84,42\}$ comprise an isospectral pair.

Definition 21 (Isospectral pair)

An isospectral pair is a pair of integers $\left\{n_{1}, n_{2}\right\}$ such that $n_{1}=2 n_{2}$, both have the same spectral basis, and of index 1 and 2 , respectively.

Maximal isopectral chains of length 2.

n_{1}	n_{1} factored	
84	$(2)^{2}(3)(7)$	$\{21,28,36\}$
228	$(2)^{2}(3)(19)$	$\{57,76,96\}$
280	$(2)^{3}(5)(7)$	$\{105,56,120\}$
340	$(2)^{2}(5)(17)$	$\{85,136,120\}$

Isospectral chains, 2/3

Definition 22
An isospectral chain of length k is defined to be a finite sequence of pairwise isospectral numbers n_{1}, \ldots, n_{k}, such that n_{i} has index i and

$$
n_{1}+1=2 n_{2}+1=\cdots=k n_{k}+1
$$

or, equivalently,

$$
n_{1}=2 n_{2}=\cdots=k n_{k} .
$$

It will be assumed that the chain length k is maximal, that is, $n_{1} /(k+1)$ is not isospectral with n_{1}.

Isospectral chains, 3/3

Maximal isopectral chains of length 3.

n_{1}	n_{1} factored	
10980	$(2)^{2}(3)^{2}(5)(61)$	$\{2745,2440,2196,3600\}$
35280	$(2)^{4}(3)^{2}(5)(7)^{2}$	$\{11025,7840,7056,9360\}$
36180	$(2)^{2}(3)^{3}(5)(67)$	$\{9045,10720,7236,9180\}$
43380	$(2)^{2}(3)^{2}(5)(241)$	$\{10845,9640,8676,14220\}$

Maximal isopectral chains of length 4.

n_{1}	n_{1} factored	
488880	$(2)^{4}(3)^{2}(5)(7)(97)$	$\{91665,108640,97776,69840,120960\}$
1525680	$(2)^{4}(3)^{2}(5)(13)(163)$	$\{286065,339040,305136,352080,243360\}$
2870280	$(2)^{3}(3)^{2}(5)(7)(17)(67)$	$\{358785,637840,574056,410040,675360,214200\}$
4930272	$(2)^{5}(3)^{2}(17)(19)(53)$	$\{1078497,1095616,1160064,1037952,558144\}$

Isotropic numbers, 1/4

- Recall that $42=2 \cdot 3 \cdot 7$ is the first number of index 2 with spectral basis $\{21,28,36\}$. Since $\{1 \cdot 21,2 \cdot 14,6 \cdot 6\}$, we call $\{1,2,6\}$ the spectral coefficients of 42.
- Consider the product of twin primes $3 \cdot 5=15$, with spectral basis $\{10,6\}$. Observe that $10=2 \cdot 5$ and $6=3 \cdot 2$ so that the spectral coefficients of 15 are $\{2,2\}$.
Definition 23 (Isotropic number)
A number is isotropic if all its spectral coefficients are equal.
Theorem 24
The product of twin primes is isotropic.
Proof.
Let p and $q=p+2$ be prime. Then $a q+a p=p q+1$ so that $a=(p q+1) /(p+q)=\left(p^{2}+2 p+1\right) /(2 p+2)=$ $(p+1)^{2} /(2(p+1))=(p+1) / 2$. It can shown that $\{a q, a p\}$ is in fact the spectral basis for $p q$.

Isotropic numbers, 2/4

Theorem 25
If p and q are primes or prime powers, and if

$$
a=(p q+1) /(p+q)
$$

is an integer, then pq is isotropic with spectral coefficient a.
Powerful isotropic numbers with two factors

1728	$(2)^{6}(3)^{3}$	$\{513,1216\}$
675	$(3)^{3}(5)^{2}$	$\{325,351\}$
7092899	$(11)^{3}(73)^{2}$	$\{5675385,1417515\}$
7138196909	$(29)^{3}(541)^{2}$	$\{6589127353,549069557\}$

Isotropic numbers, 3/4

Theorem 26 (Isotropic number theorem)

Let $n=P_{1} \cdots P_{k}$ be a product of distinct primes or prime powers. Let $\bar{P}_{i}=n / P_{i}$ and suppose that

$$
a=(n+1) /\left(\bar{P}_{1}+\cdots \bar{P}_{k}\right)
$$

is an integer. Then n is isotropic with spectral coefficient a and spectral basis $\left\{a \bar{P}_{1}, \ldots, a \bar{P}_{k}\right\}$.

Isotropic numbers with more than two factors

n		a
30	$(2)(3)(5)$	1
429	$(3)(11)(13)$	2
858	$(2)(3)(11)(13)$	1
861	$(3)(7)(41)$	2
1722	$(2)(3)(7)(41)$	1
2300	$(2)^{2}(5)^{2}(23)$	3

Isotropic numbers, 4/4

Isotropic numbers of immediate interest are those with $a=1$, called cancelable, since the spectral basis is found by deletion of prime factors.

Isotropic numbers $a=1$		
30	$(2)(3)(5)$	1
858	$(2)(3)(11)(13)$	1
1722	$(2)(3)(7)(41)$	1
66198	$(2)(3)(11)(17)(59)$	1

A search on the Online Encyclopedia of Integer Sequences, https://oeis.org/, reveals the following:

A007850 Giuga numbers: composite numbers n such that p divides $n / p-1$ for every prime divisor p of n.

$$
30,858,1722,66198,2214408306,24423128562, \ldots
$$

It is easy to show that ever Giuga number is cancelative.
Conjecture 1
A number is cancelative if and only if it is Giuga.

Fibonacci 1/2

Recall that the Fibonacci sequence is defined recursively by $F_{0}=0$, $F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}, n \geq 2$. Since $F_{m} \mid F_{n}$ whenever $m \mid n$, F_{n} can be prime only when n is prime.
Lemma 27
Let p be a prime such that F_{p} is prime. Then

$$
F_{p} \equiv\left(\frac{5}{p}\right) \quad(\bmod p)
$$

where (5|p) is the Legendre symbol defined by

$$
\left(\frac{5}{p}\right)= \begin{cases}1 & \text { if } p \equiv 1,4 \quad(\bmod 5) ; \\ -1 & \text { if } p \equiv 2,3 \quad(\bmod 5) .\end{cases}
$$

Fibonacci 1/2

Theorem 28
Let $p \neq 5$ be a prime such that F_{p} is prime. Then $p F_{p}$ has spectral basis

$$
\begin{aligned}
& \left\{F_{p}, p F_{p}-F_{p}+1\right\} \quad \text { whenever } p \equiv 1,4 \quad(\bmod 5), \\
& \left\{(p-1) F_{p}, F_{p}+1\right\} \quad \text { whenever } p \equiv 2,3 \quad(\bmod 5) .
\end{aligned}
$$

Lucas 1/1

Recall that the Lucas sequence is defined recursively by $L_{0}=2$, $L_{1}=1$, and $L_{n}=L_{n-1}+L_{n-2}, n \geq 2$. Since $L_{m} \mid L_{n}$ whenever $m \mid n$ and n / m is odd, L_{n} can be prime only when n is prime or a power of 2 .

Lemma 29

1. Let p be a prime such that L_{p} is prime. Then $L_{p} \equiv 1 \bmod p$.
2. If $L_{2^{m}}$ is prime, then $L_{2^{m}} \equiv-1 \bmod p$.

Theorem 30

1. If p is a prime such that L_{p} is prime, then $p L_{p}$ has spectral basis $\left\{L_{p}, p L_{p}-L_{p}+1\right\}$.
2. If $L_{2^{m}}$ is prime, then $2^{m} L_{2^{m}}$ has spectral basis $\left\{\left(2^{m}-1\right) L_{2^{m}}, L_{2^{m}}+1\right\}$.

NOTE: $L_{2}{ }^{m}$ is known to be prime only for $m=1,2,3,4$, just like the Fermat primes.

