23st Annual CMC³ Recreational Math Conference Lake Tahoe Community College, April 26 - 27, 2019

Power-spectral Numbers by Walter A. Kehowski, Ph.D. Glendale Community College, AZ 85302 walter.kehowski@gccaz.edu

Introduction, 1/3

Recall that modular arithmetic in Z_{12} is the set of equivalence classes of remainders modulo 12 endowed with operations of addition, subtraction, multiplication and, when possible, division. For example, it is easy to see that

$$8 + 9 = 5,$$

$$5 \cdot 7 = 1,$$

$$2 \cdot 6 = 0, \quad 3 \cdot 4 = 0.$$

Consider

$$2^{57} = 8.$$

But what about 2^{57} ? Since $2^2 = 4$, $2^3 = 8$, $2^4 = 4$, ..., it is clear that $2^{\text{even}} = 4$ and $2^{\text{odd}} = 8$. Is there any way that operations in \mathbb{Z}_{12} can be "simplified"?

Introduction, 2/3

Introduction, 3/3

Observe that, in \mathbf{Z}_{12} , we have

$$9 + 4 = 1,$$

 $9 \cdot 4 = 0,$
 $9^2 = 9,$
 $4^2 = 4.$

Furthermore, any $x \in \mathbf{Z}_{12}$ can be uniquely decomposed as

$$x = (x \mod 4) \cdot 9 + (x \mod 3) \cdot 4,$$

and

$$x^{r} = (x^{r} \mod 4) \cdot 9 + (x^{r} \mod 3) \cdot 4,$$

for all positive integers r. If x is invertible, then r can be negative as well.

The Spectral Basis Theorem

The elements 9 and 4 in Z_{12} comprise what is called the *spectral* basis for Z_{12} , or for convenience, the spectral basis of 12. It is a fact that any integer n with at least two prime factors has a spectral basis.

Theorem 1

Let $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, k > 1, be a positive integer with at least two prime factors. Then there exist elements s_1, s_2, \dots, s_k of \mathbb{Z}_n with the following properties:

$$s_1 + s_2 + \dots + s_k = 1$$
 (1)

$$s_i^2 = s_i, 1 \le i \le k,\tag{2}$$

$$s_i s_j = 0, i \neq j, \tag{3}$$

$$x = (x^r \mod p_1^{e_1}) \cdot s_1 + \dots + (x^r \mod p_k^{e_k}) \cdot s_k, (r \ge 0).$$
 (4)

We call $\{s_1, s_2, ..., s_k\}$ the spectral basis of \mathbb{Z}_n , or, for convenience, the spectral basis of n.

Proof of the Spectral Basis Theorem, 1/2

► Define the map
$$\psi$$
 : $\mathbb{Z} \to M$, $M := \mathbb{Z}_{p_1^{e_1}} \oplus \mathbb{Z}_{p_2^{e_2}} \oplus \cdots \oplus \mathbb{Z}_{p_{\nu}^{e_k}}$, by

$$\psi(x) = (\psi_1(x), \psi_2(x), \dots, \psi_k(x)), \quad \psi_i(x) = x \mod p_i^{e_i}.$$

► Let us first find the image of ψ . Given $y = (\bar{y}_1, ..., \bar{y}_k)$, there exists $x \in \mathbb{Z}$ such that $\psi(x) = y$ if and only if $x \equiv \bar{y}_i \mod p_i^{e_i}$ for all i = 1, ..., k. Since the primary factors of n are pairwise relatively prime, by the Chinese Remainder Theorem the system of congruences has a solution, and so ψ is a ring epimorphism. ► Next, let us find the kernel of ψ . The kernel is all $x \in \mathbb{Z}$ such that $x \equiv 0 \mod p_i^{e_i}$ for all i, that is, if and only if x is divisible by $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$. Consequently, the kernel of ψ is the ideal $n\mathbb{Z}$ and the induced map $\bar{\psi} : \mathbb{Z}/n\mathbb{Z} \to M$ is an isomorphism.

Proof of the Spectral Basis Theorem, 2/2

The direct sum $M := \mathbf{Z}_{p_1^{e_1}} \oplus \mathbf{Z}_{p_2^{e_2}} \oplus \cdots \oplus \mathbf{Z}_{p_k^{e_k}}$, has canonical projections $\pi_i : M \to \mathbf{Z}_{p_i^{e_i}}$ given by $\pi_i(n_1, \dots, n_k) = n_i$ that satisfy

$$\pi_1 + \dots + \pi_k = \text{Id},$$
$$\pi_i^2 = \pi_i,$$
$$\pi_i \pi_j = 0, (i \neq j).$$

What elements s_i of \mathbb{Z}_n correspond to the projections π_i of M? Define $h_i := n/p_i^{e_i}$. Since h_1, \ldots, h_k are pairwise relatively prime, there exists integers a_1, \ldots, a_k in \mathbb{Z}_n such that

$$a_1h_1 + \cdots + a_kh_k = 1$$
 in \mathbf{Z}_n .

It can be shown that

$$s_i \coloneqq a_i h_i = (h_i^{-1} \mod p_i^{e_i}) h_i$$

have the properties

$$s_1 + \dots + s_k = 1,$$

$$s_i^2 = s_i,$$

$$s_i s_j = 0, (i \neq j).$$

Power-spectral numbers

Definition 2

A positive integer is *power-spectral* if its spectral basis consists of primes or powers.

Examples 3

- 1. $\{3,4\}$ is the spectral basis for 6.
- 2. $\{9,4\}$ is the spectral basis for 12.
- 3. $\{7, 8\}$ is the spectral basis for 14.
- 4. $\{9, 16\}$ is the spectral basis for 24.
- 5. $\{15^2, 2^6\}$ is the spectral basis for $288 = (2)^5 (3)^2$.
- 6. $\{15^2, 20^2, 24^2\}$ is the spectral basis for $600 = (2)^3(3)(5)^2$.

Mersenne I, 1/2

Theorem 4 The number $2p^k$ has spectral basis $\{p^k, p^k + 1\}$.

Corollary 5 The number $2M_p$ has spectral basis $\{M_p, 2^p\}$.

Examples 6

- 1. $\{3, 2^2\}$ is the spectral basis for $2 \cdot 3$.
- 2. $\{7, 2^3\}$ is the spectral basis for $2 \cdot 7$.
- 3. $\{31, 2^5\}$ is the spectral basis for $2 \cdot 31$.
- 4. $\{127, 2^7\}$ is the spectral basis for $2 \cdot 127$.

Mersenne I, 2/2

Theorem 7

Let M_p be a Mersenne prime with Mersenne exponent p. Then the following numbers are power-spectral.

- 1. $2M_p$ has spectral basis $\{M_p, 2^p\}$ or, equivalently, $\{M_p, M_p + 1\}$.
- 2. $2^p M_p$ has spectral basis $\{M_p^2, 2^p\}$ or, equivalently, $\{M_p^2, M_p + 1\}$.
- 3. $2^{p+1}M_p$ has spectral basis $\{M_p^2, 2^{2p}\}$ or, equivalently, $\{M_p^2, (M_p + 1)^2\}$
- 4. $2^{2p+1}M_p^2$ has spectral basis $\{M_p^2(M_p+2)^2, (M_p^2-1)^2\}$.

<ロ> (四) (四) (三) (三) (三) (三)

Fermat I, 1/1

It is easily shown that $2^a + 1$ can be prime if and only if a is a power of 2. The number $F_i = 2^{2^i} + 1$, $i \ge 0$, is called a *Fermat* number and a *Fermat prime* when it is prime. The only known Fermat primes are $F_0 = 3$, $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, $F_4 = 65537$.

Theorem 8

If $F_i = 2^{f_i} + 1$ is a Fermat prime with exponent $f_i = 2^i$, $i \ge 0$, then 1. $2^{f_i}F_i$ has spectral basis $\{F_i, 2^{2f_i}\}$.

- 2. $2^{f_i+1}F_i$ has spectral basis $\{F_i^2, 2^{2f_i}\}$.
- 3. $2^{2f_i+1}F_i^2$ has spectral basis $\{(F_i-2)^2F_i^2, (F_i^2-1)^2\}$.

Cyclotomic primes, 1/3

Consider the number $20439 = 3^3 \cdot 757$. Let us verify that $\{757, 3^9\}$ is the spectral basis for 20439. Clearly, $757 + 3^9 = 20440 \equiv 1 \mod 20439$ and $757 \cdot 3^9 \equiv 0 \mod 20439$. Further,

$$757^{2} - 757 = 757 \cdot 756 = 757 \cdot 2^{2} \cdot 3^{3} \cdot 7$$

= 2² \cdot 7 \cdot (3³ \cdot 757) \equiv 0 mod 20439.
(3⁹)² - 3⁹ = 3⁹(3⁹ - 1) = 3⁹ \cdot 2 \cdot 13 \cdot 757
= 2 \cdot 3^{6} \cdot 13 \cdot (3³ \cdot 757) \equiv 0 mod 20439.

Are 757 and 3^9 related? The key is the decomposition of the identity.

Cyclotomic primes, 2/3

$$757 + 3^9 = 3^3 \cdot 757 + 1$$

$$3^9 - 1 = 3^3 \cdot 757 - 757$$

$$3^9 - 1 = (3^3 - 1)(757)$$

$$757 = \frac{3^9 - 1}{3^3 - 1}$$

Definition 9

The number $\Phi_{r^e}(p) = \frac{p^{r^e} - 1}{p^{r^{e-1}} - 1}$, where p and r are primes and $e \ge 1$, when prime, is called a *cyclotomic prime*. **NOTE:** $\Phi_{r^e}(x) = \frac{x^{r^e} - 1}{x^{r^{e-1}} - 1}$ can be prime when x is composite but

we are only interested in the case when x is prime.

Cyclotomic primes, 3/3

Theorem 10 The number $p^{r^{e-1}}\Phi_{r^e}(p)$ has spectral basis $\{\Phi_{r^e}(p), p^{r^e}\}$, where $\Phi_{r^e}(p)$ is a cyclotomic prime.

Proof.

The decomposition of the identity follows from the requirement that $\Phi_{r^e}(p)$ is prime. Let's verify the projection property for $q = \Phi_{r^e}(p)$. Observe that

$$q^{2} - q = q(q - 1) = q\left(\frac{p^{r^{e}} - 1}{p^{r^{e-1}} - 1} - 1\right)$$
$$= q\left(\frac{p^{r^{e}} - p^{r^{e-1}}}{p^{r^{e-1}} - 1}\right)$$
$$= p^{r^{e-1}}q\left(\frac{p^{r^{e} - r^{e-1}} - 1}{p^{r^{e-1}} - 1}\right)$$
$$= 0 \mod p^{r^{e-1}}q.$$

イロト イポト イヨト イヨト 三日

14/31

Exercise: $(p^{r^e})^2 \equiv p^{r^e} \mod p^{r^{e-1}}q$.

Power-spectral numbers $9p^{2s}q^{2t}$, 1/3

Of natural interest are primes solutions to $q^t = 2p^s \pm 1$ with $s, t \ge 1$. For example, **Sophie-Germain primes** are primes of the form q = 2p + 1 and **Cunningham primes** are of the form q = 2p - 1. It is open question whether or not there are infinitely many primes of the form $q = 2p \pm 1$.

Theorem 11 (Pell equation)

The equations $x^2 - 2y^2 = \pm 1$ have infinitely many integer solutions. The only prime solution to $x^2 - 2y^2 = 1$ is (x, y) = (3, 2). The only prime solutions to $x^2 - 2y^2 = -1$ known so far are

$$(7)^2 = 2(5)^2 - 1$$

 $(41)^2 = 2(29)^2 - 1$
 $(63018038201)^2 = 2(44560482149)^2 - 1$

 $(19175002942688032928599)^2 = 2(13558774610046711780701)^2 - 1$

Power-spectral numbers $9p^{2s}q^{2t}$, 2/3

Theorem 12 (Ljjungren, 1942) The only positive integer solutions to $y^2 = 2x^4 - 1$ are (x, y) = (1, 1) and (13, 239), and the only prime solution is (13, 239).

Theorem 13 (Crescenzo, 1975) The only solutions to $q^t = 2p^s \pm 1$, s, t > 1, for primes p and q occur only for (s,t) = (2,2) and (4,2).

Theorem 14 (Solutions to $q^t = 2p^s \pm 1$) The only prime solutions to $q^t = 2p^s \pm 1$, $s, t \ge 1$, occur for (s, 1), (1, t), (2, 2), and (4, 2). Power-spectral numbers $9p^{2s}q^{2t}$, 3/3

Theorem 15

Suppose $q^t = 2p^s \pm 1$ has prime solutions, $p, q \neq 3$, for some positive integers s and t. Then $9p^{2s}q^{2t}$ has spectral basis

$${p^{2s}q^{2t}, 4(p^{2s}-1)^2, 16(p^2 \pm 1)p^{2s}}.$$

Definition 16 (Ljjungren's number)

Ljjungren's number is defined to be the power-spectral number

 $3^{2}(13)^{8}(239)^{4} = 23954159206871641449.$

It is the unique power-spectral number of the form $9p^8q^4$ where p and q are prime.

Mersenne II, 1/2

Theorem 17 Let M_{v} is a Mersenne prime with Mersenne exponent p > 2. Then 1. $2^{2p-1} \cdot 3 \cdot M_n^2$ has power-spectral basis $\left\{M_p^2(M_p+2)^2, M_p^2(M_p+1)^2, (M_p^2-1)^2\right\}$ of index 2. 2. $2^{2p} \cdot 3 \cdot M_p^2$ has power-spectral basis $\left\{M_n^2(M_p+2)^2, M_n^2(M_p+1)^2, (M_n^2-1)^2\right\}$ 3. $2^{2p+1} \cdot 3 \cdot M_p^2$ has power-spectral basis $\left\{ M_p^2 \left(M_p + 2 \right)^2, 4M_p^2 (M_p + 1)^2, (M_p^2 - 1)^2 \right\}.$

The numbers 1 and 2 comprise an isospectral pair. See 22.

Mersenne II, 1/2

Theorem 18

Let M_p be a Mersenne prime with Mersenne exponent p > 2. Then

1.
$$2^{2p-3} \cdot 3^2 \cdot M_p^2$$
 has power-spectral basis

$$\left\{M_p^2(M_p+2)^2, \frac{1}{4}M_p^2(M_p+1)^2, (M_p^2-1)^2\right\}$$

of index 2.

2. $2^{2p-2} \cdot 3^2 \cdot M_p^2$ has power-spectral basis

$$\left\{M_p^2(M_p+2)^2,\frac{1}{4}M_p^2(M_p+1)^2,(M_p^2-1)^2\right\}.$$

3. $2^{2p+1} \cdot 3^2 \cdot M_p^2$ has power-spectral basis

$$\left\{M_p^2(M_p+2)^2, 16M_p^2(M_p+1)^2, (M_p^2-1)^2\right\}.$$

Furthermore, the numbers 1 and 2 comprise an isospectral pair. See 22.

Fermat II, 1/2

Theorem 19

Let F_i be a Fermat prime with exponent $f_i = 2^i$. Then the following numbers are power-spectral.

1. $2^{2f_i-1} \cdot 3 \cdot F_i^2$ has power-spectral basis

$$\{(F_i-2)^2F_i^2,(F_i-1)^2\cdot F_i^2,(F_i^2-1)^2\}.$$

with index 2. 2. $2^{2f_i} \cdot 3 \cdot F_i^2$ has power-spectral basis $\{(F_i - 2)^2 F_i^2, (F_i - 1)^2 F_i^2, (F_i^2 - 1)^2\}.$ 3. $2^{2f_i+1} \cdot 3 \cdot F_i^2$ has power-spectral basis $\{(F_i - 2)^2 F_i^2, 4(F_i - 1)^2 \cdot F_i^2, (F_i^2 - 1)^2\}.$

Furthermore, 1 and 2 form an isospectral pair. See 22.

Fermat II, 2/2

Theorem 20

Let F_i be a Fermat prime with Fermat exponent $f_i = 2^i$. Then

1. $2^3 \cdot 9 \cdot 5^2$ has power-spectral basis

$$\left\{3^25^2, 2^35^3, 2^63^2\right\}.$$

2. $2^{2f_i-3} \cdot 9 \cdot F_i^2$ has power-spectral basis

$$\left\{(F_i-2)^2F_i^2,\frac{1}{4}(F_i-1)^2F_i^2,(F_i^2-1)^2\right\}.$$

with index 2.

3. $2^{2f_i-2} \cdot 9 \cdot F_i^2$ has power-spectral basis

$$\left\{(F_i-2)^2F_i^2, \frac{1}{4}(F_i-1)^2F_i^2, (F_i^2-1)^2\right\}$$

4. $2^{2f_i+1} \cdot 9 \cdot F_i^2$, has power-spectral basis

$$\left\{ \left(F_i-2\right)^2 F_i^2, 16(F_i-1)^2 F_i^2, (F_i^2-1)^2 \right\}.$$

Furthermore, the numbers of Theorem 2 and Theorem 3 form an isospectral pair for i = 2, 3, 4. See 22.

Isospectral chains, 1/3

The pair $\{84, 42\}$ both have the same spectral basis, namely, $\{21, 28, 36\}$. Two numbers will be called *isospectral* if they have the same spectral basis. Let's look at the decomposition of the identity.

 $21 + 28 + 36 = 2 \cdot 42 + 1 \equiv 1 \mod 42$, $21 + 28 + 36 = 1 \cdot 84 + 1 \equiv 1 \mod 84$.

We say that 42 has index 2 and that 84 has index 1 and that $\{84, 42\}$ comprise an *isospectral pair*.

Definition 21 (Isospectral pair)

An *isospectral pair* is a pair of integers $\{n_1, n_2\}$ such that $n_1 = 2n_2$, both have the same spectral basis, and of index 1 and 2, respectively.

		5
n_1	n_1 factored	
84	$(2)^2(3)(7)$	{21, 28, 36}
228	$(2)^2(3)(19)$	{57, 76, 96}
280	$(2)^{3}(5)(7)$	$\{105, 56, 120\}$
340	$(2)^2(5)(17)$	{85,136,120}

Maximal isopectral chains of length 2.

Isospectral chains, 2/3

Definition 22

An *isospectral chain* of length k is defined to be a finite sequence of pairwise isospectral numbers n_1, \ldots, n_k , such that n_i has index i and

$$n_1 + 1 = 2n_2 + 1 = \cdots = kn_k + 1$$
,

or, equivalently,

$$n_1=2n_2=\cdots=kn_k.$$

It will be assumed that the chain length k is maximal, that is, $n_1/(k+1)$ is not isospectral with n_1 .

Isospectral chains, 3/3

	Maximal isopectral chains of length 3.		
n_1	n_1 factored		
10980	$(2)^2(3)^2(5)(61)$	{2745, 2440, 2196, 3600}	
35280	$(2)^4(3)^2(5)(7)^2$	{11025, 7840, 7056, 9360}	
36180	$(2)^2(3)^3(5)(67)$	{9045, 10720, 7236, 9180}	
43380	$(2)^2(3)^2(5)(241)$	{10845,9640,8676,14220}	

Maximal isopectral chains of length 4.

1	$\overline{n_1}$	n_1 factored	
48888	80	$(2)^4(3)^2(5)(7)(97)$	{91665, 108640, 97776, 69840, 120960
152568	80	() (-) (-) () (-)	
	~ ~		
		$(2)^{3}(3)^{2}(5)(7)(17)(67)$ $(2)^{5}(3)^{2}(17)(19)(53)$	{358785, 637840, 574056, 410040, 675360, 21420

Isotropic numbers, 1/4

▶ Recall that $42 = 2 \cdot 3 \cdot 7$ is the first number of index 2 with spectral basis $\{21, 28, 36\}$. Since $\{1 \cdot 21, 2 \cdot 14, 6 \cdot 6\}$, we call $\{1, 2, 6\}$ the *spectral coefficients* of 42.

► Consider the product of twin primes $3 \cdot 5 = 15$, with spectral basis $\{10, 6\}$. Observe that $10 = 2 \cdot 5$ and $6 = 3 \cdot 2$ so that the spectral coefficients of 15 are $\{2, 2\}$.

Definition 23 (Isotropic number)

A number is *isotropic* if all its spectral coefficients are equal.

Theorem 24

The product of twin primes is isotropic.

Proof.

Let p and q = p + 2 be prime. Then aq + ap = pq + 1 so that $a = (pq + 1)/(p + q) = (p^2 + 2p + 1)/(2p + 2) =$ $(p + 1)^2/(2(p + 1)) = (p + 1)/2$. It can shown that $\{aq, ap\}$ is in fact the spectral basis for pq.

Isotropic numbers, 2/4

Theorem 25 *If p and q are primes or prime powers, and if*

$$a = (pq+1)/(p+q)$$

is an integer, then pq is isotropic with spectral coefficient a.

Powerful isotropic numbers with two factors			
1728	$(2)^6(3)^3$	{513,1216}	
675	$(3)^3(5)^2$	{325,351}	
7092899	$(11)^3(73)^2$	$\{5675385, 1417515\}$	
7138196909	$(29)^3(541)^2$	{6589127353, 549069557}	

Isotropic numbers, 3/4

Theorem 26 (Isotropic number theorem) Let $n = P_1 \cdots P_k$ be a product of distinct primes or prime powers. Let $\bar{P}_i = n/P_i$ and suppose that

$$a = (n+1)/(\bar{P}_1 + \cdots + \bar{P}_k)$$

is an integer. Then n is isotropic with spectral coefficient a and spectral basis $\{a\bar{P}_1, \ldots, a\bar{P}_k\}$.

n		а
30	(2)(3)(5)	1
429	(3)(11)(13)	2
858	(2)(3)(11)(13)	1
861	(3)(7)(41)	2
1722	(2)(3)(7)(41)	1
2300	$(2)^2(5)^2(23)$	3

Isotropic numbers with more than two factors

Isotropic numbers, 4/4

Isotropic numbers of immediate interest are those with a = 1, called *cancelable*, since the spectral basis is found by deletion of prime factors.

lsot	Tropic numbers $a = 1$	
30	(2)(3)(5)	1
858	(2)(3)(11)(13)	1
1722	(2)(3)(7)(41)	1
66198	(2)(3)(11)(17)(59)	1

A search on the Online Encyclopedia of Integer Sequences, https://oeis.org/, reveals the following:

A007850 **Giuga numbers:** composite numbers n such that p divides n/p - 1 for every prime divisor p of n.

30, 858, 1722, 66198, 2214408306, 24423128562, ...

It is easy to show that ever Giuga number is cancelative.

Conjecture 1

A number is cancelative if and only if it is Giuga.

Fibonacci 1/2

Recall that the Fibonacci sequence is defined recursively by $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$, $n \ge 2$. Since $F_m | F_n$ whenever m | n, F_n can be prime only when n is prime.

Lemma 27 Let p be a prime such that F_p is prime. Then

$$F_p \equiv \left(\frac{5}{p}\right) \pmod{p},$$

where (5|p) is the Legendre symbol defined by

$$\left(\frac{5}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1,4 \pmod{5}; \\ -1 & \text{if } p \equiv 2,3 \pmod{5}. \end{cases}$$

Fibonacci 1/2

Theorem 28

Let $p \neq 5$ be a prime such that F_p is prime. Then pF_p has spectral basis

$$\{F_p, pF_p - F_p + 1\} \quad \textit{whenever } p \equiv 1,4 \pmod{5}, \\ \{(p-1)F_p, F_p + 1\} \quad \textit{whenever } p \equiv 2,3 \pmod{5}.$$

Lucas 1/1

Recall that the Lucas sequence is defined recursively by $L_0 = 2$, $L_1 = 1$, and $L_n = L_{n-1} + L_{n-2}$, $n \ge 2$. Since $L_m | L_n$ whenever m | n and n/m is odd, L_n can be prime only when n is prime or a power of 2.

Lemma 29

- 1. Let p be a prime such that L_p is prime. Then $L_p \equiv 1 \mod p$.
- 2. If L_{2^m} is prime, then $L_{2^m} \equiv -1 \mod p$.

Theorem 30

- 1. If p is a prime such that L_p is prime, then pL_p has spectral basis $\{L_p, pL_p L_p + 1\}$.
- 2. If L_{2^m} is prime, then $2^m L_{2^m}$ has spectral basis $\{(2^m 1)L_{2^m}, L_{2^m} + 1\}$.

NOTE: L_{2^m} is known to be prime only for m = 1, 2, 3, 4, just like the Fermat primes.