The Superman Punch

Once the fighter launches himself into the air, the trajectory of his shoulder follows a parabola. Suppose the angle between the launching direction and the flat ground is θ, and the launching speed is v. The vertical component of the speed is $v \sin \theta$ and the horizontal component of the speed is $v \cos \theta$.

Let (x, y) represent the coordinates of the shoulder and let the initial position of the shoulder be $(0,0)$. According to Newton's Laws (neglecting any air resistance),
$\left\{\begin{array}{l}\ddot{x}=0 \\ \ddot{y}=-g\end{array}\right.$
Where g is the acceleration due to earth's gravity. Integrating once we have

$$
\left\{\begin{array}{l}
\dot{x}=(v \cos \theta) \tag{1}\\
\dot{y}=-g t+(v \sin \theta)
\end{array}\right.
$$

Integrating once more we have

$$
\left\{\begin{array}{l}
x=(v \cos \theta) t \tag{2}\\
y=-0.5 g t^{2}+(v \sin \theta) t
\end{array}\right.
$$

Denote the speed of the shoulder by u.

$$
u^{2}=(\dot{x})^{2}+(\dot{y})^{2}=v^{2}-(2 g v \sin \theta) t+g^{2} t^{2}
$$

This is a quadratic function with its graph opening upward. Its domain is $\left[0, \frac{2 v \sin \theta}{g}\right]$. The domain is obtained by solving $y=-0.5 g t^{2}+(v \sin \theta) t=0$.

The maximum value of $u^{2}=v^{2}$ occurs at $t=0$ and $t=\frac{2 v \sin \theta}{g}$ (launching and landing).
The minimum value of $u^{2}=v^{2} \cos ^{2} \theta$ occurs at $t=\frac{v \sin \theta}{g}$ (at the highest point of the parabola).
Eliminating the parameter t from (2) yields:

$$
y=-\frac{g}{2 v^{2} \cos ^{2} \theta} x^{2}+(\tan \theta) x
$$

Its derivative, i.e., the slope of the tangent line of the trajectory, is
$\frac{d y}{d x}=-\frac{g}{v^{2} \cos ^{2} \theta} x+\tan \theta$
Which is also the tangent function of the angle α between the tangent line and the horizontal line,
$\tan \alpha=-\frac{g}{v^{2} \cos ^{2} \theta} x+\tan \theta$
Or
$\alpha=\tan ^{-1}\left(-\frac{g}{v^{2} \cos ^{2} \theta} x+\tan \theta\right)=\tan ^{-1}\left(-\frac{g}{v \cos \theta} t+\tan \theta\right)$
At $t=\frac{v \sin \theta}{g}$ (when speed is min), $\alpha=\tan ^{-1}(0)=0$.
At $t=\frac{2 v \sin \theta}{g}$ (landing, when speed is max), $\alpha=\tan ^{-1}(-\tan \theta)=-\theta$.
At $t=0$ (launching, when speed is max), $\alpha=\tan ^{-1}(\tan \theta)=\theta$.

