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Abstract
At the age of eighteen, Gauss established the constructibility of the 17-gon, a result that had
eluded mathematicians for two millennia. At the heart of his argument was a keen study of certain
sums of complex exponentials, known now as Gaussian periods. It turns out that these classical
objects, when viewed appropriately, exhibit dazzling array of visual patterns of great complexity
and remarkable subtlety. (Joint work with Bill Duke, Trevor Hyde, and Bob Lutz, and others).
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Modular Arithmetic

If n is a positive whole number and x is an integer, then

x pmod nq “ the remainder of x upon division by n.

x pmod nq is always between 0 and n ´ 1.

For instance

1 pmod 5q “ 1,

7 pmod 5q “ 2,

18 pmod 5q “ 3,

´1 pmod 5q “ 4,

3 ¨ 4 pmod 5q “ 2,

25 pmod 5q “ 2,

35 pmod 5q “ 3,

45 pmod 5q “ 4.

You use modular arithmetic all the time!
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Arithmetic Modulo n

We can do arithmetic in the set Z{nZ “ t0, 1, 2, . . . , n ´ 1u.

For
instance, addition and multiplication in Z{5Z “ t0, 1, 2, 3, 4u is
described by the tables:

` 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

ˆ 0 1 2 3 4
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1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
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Order of an integer modulo n

n 1 2 3 4 5 6 7 8 9 10
2n 2 4 8 16 32 64 128 256 512 1024

2n pmod 10q 2 4 8 6 2 4 8 6 2 4

Definition
Let gcdpa, nq “ 1. The multiplicative order of a modulo n is the
smallest positive exponent d for which ad ” 1 pmod nq.
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Not so random walks

1 Let n be a large whole number.

2 Let a be a whole number with gcdpa, nq “ 1.

3 Let d be the multiplicative order of a modulo n.

4 For each integer x , take a d-step walk starting from p0, 0q with
unit steps in the directions ax , a2x , a3x , . . . , adx (mod n).

0

1

2

3

4

0

12

3
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Allowable directions when n “ 5 Allowable directions when n “ 6

5 Mark the endpoint of each walk with a colored dot.
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Example

Let n “ 7 and a “ 2.

Working modulo 7 we have

a “ 2, a2 “ 4, a3 “ 1, a4 “ 2, a5 “ 4, . . .

so our walk has 3 steps. If x “ 4, our steps will be in the directions

ax “ 2 ¨ 4 “ 1, a2x “ 4 ¨ 4 “ 2, a3x “ 1 ¨ 4 “ 4.
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Allowable directions when n “ 7 Walk with steps in directions 1, 2, 4.
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n “ 455175, a “ 3599



n “ 68913, a “ 88



n “ 52059, a “ 766



n “ 51319, a “ 430



n “ 477493, a “ 1463



n “ 70091, a “ 21792



n “ 51319, a “ 138



n “ 357193, a “ 8862
“Eye of Sauron”
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To simplify,
make things complex



Complex exponentials

Euler’s Formula

e iθ “ cos θ ` i sin θ, (i2 “ ´1)

1´1

´i

i

θ

e iθ

0

cos θ

sin θ



Complex exponentials

Definition

epθq “ e2πiθ

ep0q
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What is really going on?

To be more precise
We are plotting the function f : ZÑ C defined by

f pxq “
d
ÿ

`“1

e

ˆ

a`x

n

˙

. (i “
?
´1)

Amazingly
These exponential sums first arose in the work of Gauss
(1777-1855). Regarding the simplest case:

However, the graphical patterns we found went unnoticed for over
two hundred years!
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Gauss’s Hidden Menagerie:
From Cyclotomy to Supercharacters
Stephan Ramon Garcia, Trevor Hyde, and Bob Lutz

At the age of eighteen, Gauss established
the constructibility of the 17-gon, a
result that had eluded mathematicians
for two millennia. At the heart of his
argument was a keen study of cer-

tain sums of complex exponentials, known now
as Gaussian periods. These sums play starring
roles in applications both classical and modern,
including Kummer’s development of arithmetic
in the cyclotomic integers [28] and the optimized
AKS primality test of H. W. Lenstra and C. Pomer-
ance [1, 32]. In a poetic twist, this recent application
of Gaussian periods realizes “Gauss’s dream” of
an efficient algorithm for distinguishing prime
numbers from composites [24].

We seek here to study Gaussian periods from a
graphical perspective. It turns out that these clas-
sical objects, when viewed appropriately, exhibit a
dazzling and eclectic host of visual qualities. Some
images contain discretized versions of familiar
shapes, while others resemble natural phenomena.
Many can be colorized to isolate certain features;
for details, see “Cyclic Supercharacters.”

Historical Context
The problem of constructing a regular polygon
with compass and straight-edge dates back to
ancient times. Descartes and others knew that with
only these tools on hand, the motivated geometer
could draw, in principle, any segment whose
length could be written as a finite composition
of sums, products, and square roots of rational
numbers [18]. Gauss’s construction of the 17-gon

Stephan Ramon Garcia is associate professor of mathe-
matics at Pomona College. His email address is Stephan.
Garcia@pomona.edu.

Trevor Hyde is a graduate student at the University of Michi-
gan. His email address is tghyde@umich.edu.

Bob Lutz is a graduate student at the University of Michi-
gan. His email address is boblutz@umich.edu. All article
figures are courtesy of Bob Lutz.

DOI: http://dx.doi.org/10.1090/noti1269

(a) n = 29 · 109 · 113n = 29 · 109 · 113n = 29 · 109 · 113,! = 8862! = 8862! = 8862, c = 113c = 113c = 113

(b) n = 37 · 97 · 113n = 37 · 97 · 113n = 37 · 97 · 113,! = 5507! = 5507! = 5507, c = 113c = 113c = 113

Figure 1. Eye and jewel—images of cyclic

supercharacters correspond to sets of Gaussian
periods. For notation and terminology, see

“Cyclic Supercharacters.”

relied on showing that
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was such a length. After reducing the constructibil-
ity of the n-gon to drawing the length cos

⇣
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n

⌘
, his

result followed easily. So proud was Gauss of this
discovery that he wrote about it throughout his

2 Notices of the AMS Volume 62, Number 8

Notices of the AMS, Sept. 2015.
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It’s not all about
pretty pictures



Theorem (W. Duke, SRG, B. Lutz ’13)

Suppose that p|n and p ” 1 pmod 4q is prime. Let

Qp “ tm P Z{pZ :
´

m
p

¯

“ 1u

denote the set of distinct nonzero quadratic residues modulo p. If

Γ “ tjn{k ` 1 : j P J`u Y tjn{k ´ 1 : j P J´u

holds where

J` “ taq ` b : q P Qpu and J´ “ tcq ´ b : q P Qpu

for integers a, b, c coprime to p with p a
p
q “ ´p c

p
q, then σX pyq belongs to the

real interval r1´ p, p ´ 1s whenever p|y , and otherwise belongs to the ellipse
described by the equation pRe zq2 ` pIm zq2{p “ 1.

Translation
Certain combinations of parameters yield ellipses.



Theorem (W. Duke, SRG, B. Lutz ’13)

Suppose that p|n and p ” 1 pmod 4q is prime. Let

Qp “ tm P Z{pZ :
´

m
p

¯

“ 1u

denote the set of distinct nonzero quadratic residues modulo p. If

Γ “ tjn{k ` 1 : j P J`u Y tjn{k ´ 1 : j P J´u

holds where

J` “ taq ` b : q P Qpu and J´ “ tcq ´ b : q P Qpu

for integers a, b, c coprime to p with p a
p
q “ ´p c

p
q, then σX pyq belongs to the

real interval r1´ p, p ´ 1s whenever p|y , and otherwise belongs to the ellipse
described by the equation pRe zq2 ` pIm zq2{p “ 1.

Translation
Certain combinations of parameters yield ellipses.



n “ 559, a “ 171



n “ 770, a “ 153



n “ 1535, a “ 613



n “ 66005, a “ 613



n “ 30030, a “ 1693



n “ 455175, a “ 3599



n “ 255255, a “ 254



Theorem (W. Duke, SRG, B. Lutz ’13)

Let r belong to Z{nZ, and suppose that pr , nq “ n
d for some

positive divisor d of n, so that ξ “ rd
n is a unit modulo n. Also let

ψ : Z{nZÑ Z{dZ

denote the natural homomorphism.
(i) The images of σΓr , σΓpr ,nq, and σψd pΓq1 are equal.

(ii) The image in (i), when scaled by |Γ|
|ψd pΓq|

, is a subset of the
image of σΓξ.

Translation
If a bunch of n’s and a’s are chosen appropriately, the
corresponding images “grow” or “nest.”
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n “ 8880, a “ 319



n “ 12432, a “ 319



n “ 15540, a “ 319



n “ 20720, a “ 319



n “ 62160, a “ 319



Theorem (W. Duke, SRG, B. Lutz ’13)

Let σX be a cyclic supercharacter of Z{qZ, where q is a nonzero power of an
odd prime p. If X “ A1 and |X | “ d divides p ´ 1, then the image of σX is
contained in the image of the function g : Tφpdq Ñ C defined by

gpz1, z2, . . . , zφpdqq “
d´1
ÿ

k“0

φpdq´1
ź

j“0

z
bk,j
j`1

where the integers bk,j are given by

tk ”

φpdq´1
ÿ

j“0

bk,j t
j
pmod Φdptqq.

For a fixed d , as q becomes large, the image of σX fills out the image of g , in
the sense that, given ε ą 0, there exists some q ” 1 pmod dq such that if
σX : Z{qZÑ C is a cyclic supercharacter with |X | “ d , then every open ball of
radius ε ą 0 in the image of g has nonempty intersection with the image of σX .

Translation
Plots can “fill out” the image of simple “mapping functions”
g : Tm Ñ C from high-dimensional tori into C.
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Deformation of a torus



n “ 73



n “ 961



n “ 3571



n “ 2017, a “ 294
gpz1, z2q “ z1 ` z2 ` z´1

1 z´1
2



n “ 32587, a “ 10922
gpz1, z2q “ z1 ` z2 ` z´1

1 z´1
2



n “ 200017, a “ 35098
gpz1, z2q “ z1 ` z2 ` z´1

1 z´1
2



n “ 2791, a “ 800
gpz1, z2, z3, z4q “ z1 ` z2 ` z3 ` z4 ` z´1

1 z´1
2 z´1

3 z´1
4



n “ 27011, a “ 9360
gpz1, z2, z3, z4q “ z1 ` z2 ` z3 ` z4 ` z´1

1 z´1
2 z´1

3 z´1
4



n “ 202231, a “ 61576
gpz1, z2, z3, z4q “ z1 ` z2 ` z3 ` z4 ` z´1

1 z´1
2 z´1

3 z´1
4



n “ 4019, a “ 1551



n “ 32173, a “ 3223



n “ 200033, a “ 11073



n “ 352655, a “ 54184



n “ 477493, a “ 2546



n “ 82677, a “ 8147



n “ 6467729, a “ 6085605



Exponential sums

S. Ramanujan H. Kloosterman C.F. Gauss
n
ÿ

j“1
pj,nq“1

e
2πijx
n

n
ÿ

`“1
p`,nq“1

e
2πipa``b`q

n

n
ÿ

k“1

e
2πixk2

n

My students and I established a general framework under which a
wide variety of exponential sums of interest in number theory can
be studied. Some of these sums, such as generalized Kloosterman
sums, yield interesting images as well.



n “ 3020, a “ 1089



n “ 4378, a “ 291



n “ 9015, a “ 2284



n “ 890, a “ 479



n “ 9015, a “ 577



n “ 13309, a “ 7



n “ 2221, a “ 71



n “ 3571, a “ 47



http://www.pomona.edu/news/2014/04/28-nsf-fellowships.aspx

http://www.pomona.edu/news/2014/04/28-nsf-fellowships.aspx


What’s the big deal about exponential sums?

Concerning Zhang’s work on bounded gaps between primes:

“For the Type I and Type II sums, it was the classical Weil bound on
Kloosterman sums that were the key source of power saving. . . For
the Type III sums, one needs a significantly deeper consequence of
the Weil conjectures, namely the estimate of Bombieri and Birch on
a three-dimensional variant of a Kloosterman sum. Furthermore,
the Ramanujan sums. . . make a crucial appearance. . . This
improvement over the square root heuristic, which is ultimately due
to the presence of a Ramanujan sum inside this three-dimensional
exponential sum in certain degenerate cases, is crucial to Zhang’s
argument.” - Terence Tao

Source: http://terrytao.wordpress.com/2013/06/14/estimation-of-the-type-iii-sums/

http://terrytao.wordpress.com/2013/06/14/estimation-of-the-type-iii-sums/


Faux symmetry

For the record
The first interesting “supercharacter plots” were discovered by my
2012 REU group. In fact, they discovered an entirely new class of
intriguing exponential sums.

For your safety
I won’t even attempt to describe the math behind the REU plots.
Let’s just say that the parameters involved are

a modulus n,

a dimension d ,

a list x “ px1, x2, . . . , xdq of integers.

Beware of faux symmetry
A puzzling feature of some REU plots is “faux symmetry” - the
sneaky appearance of fraudulent large scale symmetry!
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n “ 10, d “ 8, x “ p0, 1, 3, 8, 8, 8, 8, 8q
5-fold rotational symmetry



n “ 96, d “ 3, x “ p1, 1, 6q
36-fold faux symmetry, 12-fold rotational symmetry



n “ 24, d “ 5, x “ p1, 1, 2, 2, 2q
15-fold faux symmetry, 3-fold rotational symmetry



n “ 12, d “ 7, x “ p1, 1, 1, 1, 1, 1, 6q
7-fold faux symmetry, no rotational symmetry



n “ 25, d “ 4, x “ p1, 1, 1, 2q
20-fold faux symmetry, 5-fold rotational symmetry



Large scale order
Certain families of plots exhibit “coherence” and their asymptotic
behavior can be finely described.

Theorem
Fix n and d and let X “ tx1, x2, . . . , xru be a Sd -orbit in pZ{nZqd .
Suppose that the d ˆ r matrix A “ rx1 x2 . . . xr s can be row reduced
modulo n to obtain a simpler matrix B “ rb1 b2 . . . br s. If the final k
rows of B are zero, then the image of σX : pZ{nZqd Ñ C “roughly
approximates” the image of the function g : Td´k Ñ C defined by

gpz1, z2, . . . , zd´kq “

r
ÿ

`“1

d´k
ź

j“1

z
bj`
j .

Translation
Hummingbirds and manta rays exist, mathematically speaking.
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n “ 47, d “ 3, x “ p1, 2, 44q



n “ 73, d “ 3, x “ p1, 2, 70q



n “ 173, d “ 3, x “ p1, 2, 170q



n “ 17, d “ 4, x “ p0, 1, 1, 15q



n “ 27, d “ 4, x “ p0, 1, 1, 25q



n “ 47, d “ 4, x “ p0, 1, 1, 45q



College Mathematics Journal, January 2016



n “ 30, d “ 4, x “ p1, 2, 2, 29q



n “ 30, d “ 4, x “ p2, 3, 3, 0q



n “ 30, d “ 4, x “ p3, 4, 4, 1q



n “ 30, d “ 4, x “ p5, 6, 6, 3q



n “ 30, d “ 4, x “ p6, 7, 7, 4q



n “ 30, d “ 4, x “ p10, 11, 11, 8q



n “ 30, d “ 4, x “ p15, 16, 16, 13q



n “ 30, d “ 4, x “ p0, 1, 1, 28q



Harvey Mudd College Bulletin, Fall 2012.



Further research
Certain supercharacter plots resemble diffraction patterns produced
by quasicrystals – chemical structures which are three-dimensional,
physical, real-world analogues of Penrose tilings (Dan Shechtman
earned the 2011 Nobel Prize in Chemistry for their discovery).

A Penrose tiling is a certain aperiodic tiling of the plane with “faux” five-fold symmetry.



Laue diffraction pattern for the chemical Al65Cu15Co20



Plot of all supercharacters arising from the action of S4 on pZ{10Zq4



Both images together



Super Characters

1 J.L. Brumbaugh (POM ’13)

2 Madeleine Bulkow (SCR ’14, UCLA)

3 Paula Burkhardt (POM ’16, UC Berkeley)

4 Alice Z.-Y. Chan (POM ’14, UC San Diego)

5 Gabriel Currier (POM ’16)

6 Christopher Fowler (POM ’12, U. Washington)

7 Luis A. Garcia German (POM ’14, Washington U.)

8 Trevor Hyde (University of Michigan)

9 Bob Lutz (POM ’13, University of Michigan)

10 Matt Michal (CGU ’15)

11 Hong Suh (POM ’16, UC Berkeley)

12 Andrew P. Turner (HMC ’14, MIT)
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