Gauss' Hidden Menagerie: the Graphic Nature of Gaussian Periods

Stephan Ramon Garcia

CMC ${ }^{3}$ Recreational Math Conference

April 23, 2016

Abstract

At the age of eighteen, Gauss established the constructibility of the 17 -gon, a result that had eluded mathematicians for two millennia. At the heart of his argument was a keen study of certain sums of complex exponentials, known now as Gaussian periods. It turns out that these classical objects, when viewed appropriately, exhibit dazzling array of visual patterns of great complexity and remarkable subtlety. (Joint work with Bill Duke, Trevor Hyde, and Bob Lutz, and others).

Partially supported by NSF Grants DMS-1265973 \& DMS-1001614 and by the Fletcher Jones Foundation.

Sneak Preview

What sort of mathematical mechanism makes pictures like this?

What sort of mathematical mechanism makes pictures like this?

What sort of mathematical mechanism makes pictures like this?

What sort of mathematical mechanism makes pictures like this?

What sort of mathematical mechanism makes pictures like this?

Modular Arithmetic

Modular Arithmetic

- If n is a positive whole number and x is an integer, then

$$
x(\bmod n)=\text { the remainder of } x \text { upon division by } n \text {. }
$$

Modular Arithmetic

- If n is a positive whole number and x is an integer, then

$$
x(\bmod n)=\text { the remainder of } x \text { upon division by } n .
$$

- $x(\bmod n)$ is always between 0 and $n-1$.

Modular Arithmetic

- If n is a positive whole number and x is an integer, then

$$
x(\bmod n)=\text { the remainder of } x \text { upon division by } n .
$$

- $x(\bmod n)$ is always between 0 and $n-1$.
- For instance

Modular Arithmetic

- If n is a positive whole number and x is an integer, then

$$
x(\bmod n)=\text { the remainder of } x \text { upon division by } n .
$$

- $x(\bmod n)$ is always between 0 and $n-1$.
- For instance
- $1(\bmod 5)=1$,

Modular Arithmetic

- If n is a positive whole number and x is an integer, then

$$
x(\bmod n)=\text { the remainder of } x \text { upon division by } n .
$$

- $x(\bmod n)$ is always between 0 and $n-1$.
- For instance
- $1(\bmod 5)=1$,
- $7(\bmod 5)=2$,

Modular Arithmetic

- If n is a positive whole number and x is an integer, then

$$
x(\bmod n)=\text { the remainder of } x \text { upon division by } n .
$$

- $x(\bmod n)$ is always between 0 and $n-1$.
- For instance
- $1(\bmod 5)=1$,
- $7(\bmod 5)=2$,
- $18(\bmod 5)=3$,

Modular Arithmetic

- If n is a positive whole number and x is an integer, then

$$
x(\bmod n)=\text { the remainder of } x \text { upon division by } n .
$$

- $x(\bmod n)$ is always between 0 and $n-1$.
- For instance
- $1(\bmod 5)=1$,
- $7(\bmod 5)=2$,
- $18(\bmod 5)=3$,
- $-1(\bmod 5)=4$,

Modular Arithmetic

- If n is a positive whole number and x is an integer, then

$$
x(\bmod n)=\text { the remainder of } x \text { upon division by } n .
$$

- $x(\bmod n)$ is always between 0 and $n-1$.
- For instance
- $1(\bmod 5)=1$,
- $3 \cdot 4(\bmod 5)=2$,
- $7(\bmod 5)=2$,
- $18(\bmod 5)=3$,
- $-1(\bmod 5)=4$,

Modular Arithmetic

- If n is a positive whole number and x is an integer, then

$$
x(\bmod n)=\text { the remainder of } x \text { upon division by } n .
$$

- $x(\bmod n)$ is always between 0 and $n-1$.
- For instance
- $1(\bmod 5)=1$,
- $3 \cdot 4(\bmod 5)=2$,
- $7(\bmod 5)=2$,
- $2^{5}(\bmod 5)=2$,
- $18(\bmod 5)=3$,
- $-1(\bmod 5)=4$,

Modular Arithmetic

- If n is a positive whole number and x is an integer, then

$$
x(\bmod n)=\text { the remainder of } x \text { upon division by } n .
$$

- $x(\bmod n)$ is always between 0 and $n-1$.
- For instance
- $1(\bmod 5)=1$,
- $3 \cdot 4(\bmod 5)=2$,
- $7(\bmod 5)=2$,
- $2^{5}(\bmod 5)=2$,
- $18(\bmod 5)=3$,
- $3^{5}(\bmod 5)=3$,
- $-1(\bmod 5)=4$,

Modular Arithmetic

- If n is a positive whole number and x is an integer, then

$$
x(\bmod n)=\text { the remainder of } x \text { upon division by } n .
$$

- $x(\bmod n)$ is always between 0 and $n-1$.
- For instance
- $1(\bmod 5)=1$,
- $3 \cdot 4(\bmod 5)=2$,
- $7(\bmod 5)=2$,
- $2^{5}(\bmod 5)=2$,
- $18(\bmod 5)=3$,
- $3^{5}(\bmod 5)=3$,
- $-1(\bmod 5)=4$,
- $4^{5}(\bmod 5)=4$.

Modular Arithmetic

- If n is a positive whole number and x is an integer, then

$$
x(\bmod n)=\text { the remainder of } x \text { upon division by } n .
$$

- $x(\bmod n)$ is always between 0 and $n-1$.
- For instance
- $1(\bmod 5)=1$,
- $3 \cdot 4(\bmod 5)=2$,
- $7(\bmod 5)=2$,
- $2^{5}(\bmod 5)=2$,
- $18(\bmod 5)=3$,
- $3^{5}(\bmod 5)=3$,
- $-1(\bmod 5)=4$,
- $4^{5}(\bmod 5)=4$.
- You use modular arithmetic all the time!

- Computing with hours is arithmetic modulo 12,

- Computing with hours is arithmetic modulo 12,
- Computing with minutes is arithmetic modulo 60,

- Computing with hours is arithmetic modulo 12,
- Computing with minutes is arithmetic modulo 60,
- Computing with seconds is arithmetic modulo 60.

Arithmetic Modulo n

We can do arithmetic in the set $\mathbb{Z} / n \mathbb{Z}=\{0,1,2, \ldots, n-1\}$.

Arithmetic Modulo n

We can do arithmetic in the set $\mathbb{Z} / n \mathbb{Z}=\{0,1,2, \ldots, n-1\}$. For instance, addition and multiplication in $\mathbb{Z} / 5 \mathbb{Z}=\{0,1,2,3,4\}$ is described by the tables:

Arithmetic Modulo n

We can do arithmetic in the set $\mathbb{Z} / n \mathbb{Z}=\{0,1,2, \ldots, n-1\}$. For instance, addition and multiplication in $\mathbb{Z} / 5 \mathbb{Z}=\{0,1,2,3,4\}$ is described by the tables:

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

\times	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Arithmetic Modulo n

We can do arithmetic in the set $\mathbb{Z} / n \mathbb{Z}=\{0,1,2, \ldots, n-1\}$. For instance, addition and multiplication in $\mathbb{Z} / 5 \mathbb{Z}=\{0,1,2,3,4\}$ is described by the tables:

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

\times	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Arithmetic Modulo n

We can do arithmetic in the set $\mathbb{Z} / n \mathbb{Z}=\{0,1,2, \ldots, n-1\}$. For instance, addition and multiplication in $\mathbb{Z} / 5 \mathbb{Z}=\{0,1,2,3,4\}$ is described by the tables:

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

\times	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Arithmetic Modulo n

We can do arithmetic in the set $\mathbb{Z} / n \mathbb{Z}=\{0,1,2, \ldots, n-1\}$. For instance, addition and multiplication in $\mathbb{Z} / 5 \mathbb{Z}=\{0,1,2,3,4\}$ is described by the tables:

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

\times	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Order of an integer modulo n

n	1	2	3	4	5	6	7	8	9	10
2^{n}	2	4	8	16	32	64	128	256	512	1024
$2^{n}(\bmod 10)$	2	4	8	6	2	4	8	6	2	4

Order of an integer modulo n

n	1	2	3	4	5	6	7	8	9	10
2^{n}	2	4	8	16	32	64	128	256	512	1024
$2^{n}(\bmod 10)$	2	4	8	6	2	4	8	6	2	4
$2^{n}(\bmod 5)$	2	4	3	1	2	4	3	1	2	4

Order of an integer modulo n

n	1	2	3	4	5	6	7	8	9	10
2^{n}	2	4	8	16	32	64	128	256	512	1024
$2^{n}(\bmod 10)$	2	4	8	6	2	4	8	6	2	4
$2^{n}(\bmod 5)$	2	4	3	1	2	4	3	1	2	4
$2^{n}(\bmod 7)$	2	4	1	2	4	1	2	4	1	2

Order of an integer modulo n

n	1	2	3	4	5	6	7	8	9	10
2^{n}	2	4	8	16	32	64	128	256	512	1024
$2^{n}(\bmod 10)$	2	4	8	6	2	4	8	6	2	4
$2^{n}(\bmod 5)$	2	4	3	1	2	4	3	1	2	4
$2^{n}(\bmod 7)$	2	4	1	2	4	1	2	4	1	2
$2^{n}(\bmod 9)$	2	4	8	7	5	1	2	4	8	7

Order of an integer modulo n

n	1	2	3	4	5	6	7	8	9	10
2^{n}	2	4	8	16	32	64	128	256	512	1024
$2^{n}(\bmod 10)$	2	4	8	6	2	4	8	6	2	4
$2^{n}(\bmod 5)$	2	4	3	1	2	4	3	1	2	4
$2^{n}(\bmod 7)$	2	4	1	2	4	1	2	4	1	2
$2^{n}(\bmod 9)$	2	4	8	7	5	1	2	4	8	7
$2^{n}(\bmod 11)$	2	4	8	5	10	9	7	3	6	1

Order of an integer modulo n

n	1	2	3	4	5	6	7	8	9	10
2^{n}	2	4	8	16	32	64	128	256	512	1024
$2^{n}(\bmod 10)$	2	4	8	6	2	4	8	6	2	4
$2^{n}(\bmod 5)$	2	4	3	1	2	4	3	1	2	4
$2^{n}(\bmod 7)$	2	4	1	2	4	1	2	4	1	2
$2^{n}(\bmod 9)$	2	4	8	7	5	1	2	4	8	7
$2^{n}(\bmod 11)$	2	4	8	5	10	9	7	3	6	1

Definition

Let $\operatorname{gcd}(a, n)=1$. The multiplicative order of a modulo n is the smallest positive exponent d for which $a^{d} \equiv 1(\bmod n)$.

Order of an integer modulo n

n	1	2	3	4	5	6	7	8	9	10
2^{n}	2	4	8	16	32	64	128	256	512	1024
$2^{n}(\bmod 10)$	2	4	8	6	2	4	8	6	2	4
$2^{n}(\bmod 5)$	2	4	3	1	2	4	3	1	2	4
$2^{n}(\bmod 7)$	2	4	1	2	4	1	2	4	1	2
$2^{n}(\bmod 9)$	2	4	8	7	5	1	2	4	8	7
$2^{n}(\bmod 11)$	2	4	8	5	10	9	7	3	6	1

Definition

Let $\operatorname{gcd}(a, n)=1$. The multiplicative order of a modulo n is the smallest positive exponent d for which $a^{d} \equiv 1(\bmod n)$.

How to make some cool math pictures!

Not so random walks

(1) Let n be a large whole number.

Not so random walks

(1) Let n be a large whole number.
(2) Let a be a whole number with $\operatorname{gcd}(a, n)=1$.

Not so random walks

(1) Let n be a large whole number.
(2) Let a be a whole number with $\operatorname{gcd}(a, n)=1$.
(3) Let d be the multiplicative order of a modulo n.

Not so random walks

(1) Let n be a large whole number.
(2) Let a be a whole number with $\operatorname{gcd}(a, n)=1$.
(3) Let d be the multiplicative order of a modulo n.
(4) For each integer x, take a d-step walk starting from $(0,0)$ with unit steps in the directions $a x, a^{2} x, a^{3} x, \ldots, a^{d} x(\bmod n)$.

Allowable directions when $n=5$

Allowable directions when $n=6$

Not so random walks

(1) Let n be a large whole number.
(2) Let a be a whole number with $\operatorname{gcd}(a, n)=1$.
(3) Let d be the multiplicative order of a modulo n.
(4) For each integer x, take a d-step walk starting from $(0,0)$ with unit steps in the directions $a x, a^{2} x, a^{3} x, \ldots, a^{d} x(\bmod n)$.

Allowable directions when $n=5$

Allowable directions when $n=6$
(5) Mark the endpoint of each walk with a colored dot.

Example

Let $n=7$ and $a=2$.

Example

Let $n=7$ and $a=2$. Working modulo 7 we have

$$
a=2, \quad a^{2}=4, \quad a^{3}=1, \quad a^{4}=2, \quad a^{5}=4, \ldots
$$

Example

Let $n=7$ and $a=2$. Working modulo 7 we have

$$
a=2, \quad a^{2}=4, \quad a^{3}=1, \quad a^{4}=2, \quad a^{5}=4, \ldots
$$

so our walk has 3 steps.

Example

Let $n=7$ and $a=2$. Working modulo 7 we have

$$
a=2, \quad a^{2}=4, \quad a^{3}=1, \quad a^{4}=2, \quad a^{5}=4, \ldots
$$

so our walk has 3 steps. If $x=4$, our steps will be in the directions

$$
a x=2 \cdot 4=1, \quad a^{2} x=4 \cdot 4=2, \quad a^{3} x=1 \cdot 4=4
$$

Example

Let $n=7$ and $a=2$. Working modulo 7 we have

$$
a=2, \quad a^{2}=4, \quad a^{3}=1, \quad a^{4}=2, \quad a^{5}=4, \ldots
$$

so our walk has 3 steps. If $x=4$, our steps will be in the directions

$$
a x=2 \cdot 4=1, \quad a^{2} x=4 \cdot 4=2, \quad a^{3} x=1 \cdot 4=4 .
$$

$$
n=70091, a=21792
$$

$$
\begin{gathered}
n=357193, a=8862 \\
\text { "Eye of Sauron" }
\end{gathered}
$$

"Eye of Sauron"
(older visualization technique)

"Eye of Sauron"
(older visualization technique)

To simplify, make things complex

Complex exponentials

Euler's Formula

$$
e^{i \theta}=\cos \theta+i \sin \theta, \quad\left(i^{2}=-1\right)
$$

Complex exponentials

Definition

$$
e(\theta)=e^{2 \pi i \theta}
$$

Complex exponentials

Definition

$$
e(\theta)=e^{2 \pi i \theta}
$$

What is really going on?

To be more precise
We are plotting the function $f: \mathbb{Z} \rightarrow \mathbb{C}$ defined by

$$
f(x)=\sum_{\ell=1}^{d} e\left(\frac{a^{\ell} x}{n}\right) . \quad(i=\sqrt{-1})
$$

What is really going on?

To be more precise
We are plotting the function $f: \mathbb{Z} \rightarrow \mathbb{C}$ defined by

$$
f(x)=\sum_{\ell=1}^{d} e\left(\frac{a^{\ell} x}{n}\right) . \quad(i=\sqrt{-1})
$$

Amazingly

These exponential sums first arose in the work of Gauss (1777-1855).

What is really going on?

To be more precise

We are plotting the function $f: \mathbb{Z} \rightarrow \mathbb{C}$ defined by

$$
f(x)=\sum_{\ell=1}^{d} e\left(\frac{a^{\ell} x}{n}\right) . \quad(i=\sqrt{-1})
$$

Amazingly

These exponential sums first arose in the work of Gauss (1777-1855). Regarding the simplest case:

Demonstratio theorematis venustissimi supra 1801 Mai commemorati, quam per 4 annos et ultra omni contentione quaersiveramus, tandem perfecimus. - C.F. Gauss, August 30, 1805

What is really going on?

To be more precise

We are plotting the function $f: \mathbb{Z} \rightarrow \mathbb{C}$ defined by

$$
f(x)=\sum_{\ell=1}^{d} e\left(\frac{a^{\ell} x}{n}\right) . \quad(i=\sqrt{-1})
$$

Amazingly

These exponential sums first arose in the work of Gauss (1777-1855). Regarding the simplest case:

At length we achieved a demonstration of the very elegant theorem mentioned before in May, 1801, which we had sought for more than four years with all efforts. - C.F. Gauss, August 30, 1805

What is really going on?

To be more precise

We are plotting the function $f: \mathbb{Z} \rightarrow \mathbb{C}$ defined by

$$
f(x)=\sum_{\ell=1}^{d} e\left(\frac{a^{\ell} x}{n}\right) . \quad(i=\sqrt{-1})
$$

Amazingly

These exponential sums first arose in the work of Gauss (1777-1855). Regarding the simplest case:

At length we achieved a demonstration of the very elegant theorem mentioned before in May, 1801, which we had sought for more than four years with all efforts. - C.F. Gauss, August 30, 1805

However, the graphical patterns we found went unnoticed for over two hundred years!

Pomona College Magazine, Fall 2013.

Gauss's Hidden Menagerie: From Cyclotomy to Supercharacters

Stephan Ramon Garcia, Trevor Hyde, and Bob Lutz

Figure 1. Eye and jewel-images of cyclic apercharacters correspond to sets of Gaussian
periods. For notation and terminology, see Cyclic Supercharacters.
relled on showing that

$+2 \sqrt{17+3 \sqrt{17}-\sqrt{34-2 \sqrt{17}}-2 \sqrt{34+2 \sqrt{17}}}$ was such a length. After reducing the constructibility of the n-gon to drawing the length $\cos \left(\frac{2 \pi}{n}\right)$, his result followed easly. So proud was G discovery that he wrote about it throughout his

$$
n=91205, a=39626
$$

$$
n=52059, a=766
$$

It's not all about pretty pictures

Theorem (W. Duke, SRG, B. Lutz '13)

Suppose that $p \mid n$ and $p \equiv 1(\bmod 4)$ is prime. Let

$$
Q_{p}=\left\{m \in \mathbb{Z} / p \mathbb{Z}:\left(\frac{m}{p}\right)=1\right\}
$$

denote the set of distinct nonzero quadratic residues modulo p. If

$$
\Gamma=\left\{j n / k+1: j \in J_{+}\right\} \cup\left\{j n / k-1: j \in J_{-}\right\}
$$

holds where

$$
J_{+}=\left\{a q+b: q \in Q_{p}\right\} \quad \text { and } \quad J_{-}=\left\{c q-b: q \in Q_{p}\right\}
$$

for integers a, b, c coprime to p with $\left(\frac{a}{p}\right)=-\left(\frac{c}{p}\right)$, then $\sigma_{X}(y)$ belongs to the real interval $[1-p, p-1]$ whenever $p \mid y$, and otherwise belongs to the ellipse described by the equation $(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2} / p=1$.

Theorem (W. Duke, SRG, B. Lutz '13)

Suppose that $p \mid n$ and $p \equiv 1(\bmod 4)$ is prime. Let

$$
Q_{p}=\left\{m \in \mathbb{Z} / p \mathbb{Z}:\left(\frac{m}{p}\right)=1\right\}
$$

denote the set of distinct nonzero quadratic residues modulo p. If

$$
\Gamma=\left\{j n / k+1: j \in J_{+}\right\} \cup\left\{j n / k-1: j \in J_{-}\right\}
$$

holds where

$$
J_{+}=\left\{a q+b: q \in Q_{p}\right\} \quad \text { and } \quad J_{-}=\left\{c q-b: q \in Q_{p}\right\}
$$

for integers a, b, c coprime to p with $\left(\frac{a}{p}\right)=-\left(\frac{c}{p}\right)$, then $\sigma x(y)$ belongs to the real interval $[1-p, p-1]$ whenever $p \mid y$, and otherwise belongs to the ellipse described by the equation $(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2} / p=1$.

Translation

Certain combinations of parameters yield ellipses.

Theorem (W. Duke, SRG, B. Lutz '13)

Let r belong to $\mathbb{Z} / n \mathbb{Z}$, and suppose that $(r, n)=\frac{n}{d}$ for some positive divisor d of n, so that $\xi=\frac{r d}{n}$ is a unit modulo n. Also let

$$
\psi: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / d \mathbb{Z}
$$

denote the natural homomorphism.
(i) The images of $\sigma_{\Gamma r}, \sigma_{\Gamma(r, n)}$, and $\sigma_{\psi_{d}(\Gamma) 1}$ are equal.
(ii) The image in (i), when scaled by $\frac{|\Gamma|}{\left|\psi_{d}(\Gamma)\right|}$, is a subset of the image of $\sigma_{\Gamma \xi}$.

Theorem (W. Duke, SRG, B. Lutz '13)

Let r belong to $\mathbb{Z} / n \mathbb{Z}$, and suppose that $(r, n)=\frac{n}{d}$ for some positive divisor d of n, so that $\xi=\frac{r d}{n}$ is a unit modulo n. Also let

$$
\psi: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / d \mathbb{Z}
$$

denote the natural homomorphism.
(i) The images of $\sigma_{\Gamma r}, \sigma_{\Gamma(r, n)}$, and $\sigma_{\psi_{d}(\Gamma) 1}$ are equal.
(ii) The image in (i), when scaled by $\frac{|\Gamma|}{\left|\psi_{d}(\Gamma)\right|}$, is a subset of the image of $\sigma_{\Gamma \xi}$.

Translation

If a bunch of n 's and a's are chosen appropriately, the corresponding images "grow" or "nest."

Theorem (W. Duke, SRG, B. Lutz '13)

Let σ_{X} be a cyclic supercharacter of $\mathbb{Z} / q \mathbb{Z}$, where q is a nonzero power of an odd prime p. If $X=A 1$ and $|X|=d$ divides $p-1$, then the image of σ_{X} is contained in the image of the function $g: \mathbb{T}^{\phi(d)} \rightarrow \mathbb{C}$ defined by

$$
g\left(z_{1}, z_{2}, \ldots, z_{\phi(d)}\right)=\sum_{k=0}^{d-1} \prod_{j=0}^{\phi(d)-1} z_{j+1}^{b_{k, j}}
$$

where the integers $b_{k, j}$ are given by

$$
t^{k} \equiv \sum_{j=0}^{\phi(d)-1} b_{k, j} t^{j}\left(\bmod \Phi_{d}(t)\right) .
$$

For a fixed d, as q becomes large, the image of σ_{X} fills out the image of g, in the sense that, given $\epsilon>0$, there exists some $q \equiv 1(\bmod d)$ such that if $\sigma_{X}: \mathbb{Z} / q \mathbb{Z} \rightarrow \mathbb{C}$ is a cyclic supercharacter with $|X|=d$, then every open ball of radius $\epsilon>0$ in the image of g has nonempty intersection with the image of σ_{X}.

Theorem (W. Duke, SRG, B. Lutz '13)

Let σ_{X} be a cyclic supercharacter of $\mathbb{Z} / q \mathbb{Z}$, where q is a nonzero power of an odd prime p. If $X=A 1$ and $|X|=d$ divides $p-1$, then the image of σ_{X} is contained in the image of the function $g: \mathbb{T}^{\phi(d)} \rightarrow \mathbb{C}$ defined by

$$
g\left(z_{1}, z_{2}, \ldots, z_{\phi(d)}\right)=\sum_{k=0}^{d-1} \prod_{j=0}^{\phi(d)-1} z_{j+1}^{b_{k, j}}
$$

where the integers $b_{k, j}$ are given by

$$
t^{k} \equiv \sum_{j=0}^{\phi(d)-1} b_{k, j} t^{j}\left(\bmod \Phi_{d}(t)\right)
$$

For a fixed d, as q becomes large, the image of σ_{X} fills out the image of g, in the sense that, given $\epsilon>0$, there exists some $q \equiv 1(\bmod d)$ such that if $\sigma_{X}: \mathbb{Z} / q \mathbb{Z} \rightarrow \mathbb{C}$ is a cyclic supercharacter with $|X|=d$, then every open ball of radius $\epsilon>0$ in the image of g has nonempty intersection with the image of σ_{X}.

Translation

Plots can "fill out" the image of simple "mapping functions" $g: \mathbb{T}^{m} \rightarrow \mathbb{C}$ from high-dimensional tori into \mathbb{C}.

$$
n=3571
$$

$$
\begin{gathered}
n=2791, a=800 \\
g\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{1}+z_{2}+z_{3}+z_{4}+z_{1}^{-1} z_{2}^{-1} z_{3}^{-1} z_{4}^{-1}
\end{gathered}
$$

$$
n=32173, a=3223
$$

S. Ramanujan

$$
\sum_{\substack{j=1 \\(j, n)=1}}^{n} e^{\frac{2 \pi i j x}{n}}
$$

H. Kloosterman
$\sum_{\substack{\ell=1 \\(\ell, n)=1}}^{n} e^{\frac{2 \pi i(a \ell+b \bar{\ell})}{n}}$

C.F. Gauss
$\sum_{k=1}^{n} e^{\frac{2 \pi i x k^{2}}{n}}$

My students and I established a general framework under which a wide variety of exponential sums of interest in number theory can be studied. Some of these sums, such as generalized Kloosterman sums, yield interesting images as well.

$$
n=2221, a=71
$$

$$
n=3571, a=47
$$

Alice Chan, Cooper Galvin \& Gabriella Heller Win National Science Foundation Fellowships

By \quad Cynthia Peters 1:30 pm April 28, 2014 Students, Research

Pomona College seniors Alice Chan, Galvin Cooper and Gabriella Heller have been awarded National Science Foundation (NSF) Graduate Research Fellowships along with seven Pomona alumni. The grants provide an annual stipend of $\$ 32,000$ for three years and a $\$ 12,000$ cost-of-education allowance to the institution. Recipients are selected "based on their demonstrated potential for significant achievements in science and engineering."

Alice Chan, a mathematics major from Westford, Mass., will pursue a Ph.D. in mathematics, at UC San Diego. Her NSF proposal, "Reconstruction without Phase and Finite Frame Decomposition," involves applying frame theory to the field of compressed sensing, which studies the problem of reconstructing

Alice Chan

What's the big deal about exponential sums?

Concerning Zhang's work on bounded gaps between primes:
"For the Type I and Type II sums, it was the classical Weil bound on Kloosterman sums that were the key source of power saving. . . For the Type III sums, one needs a significantly deeper consequence of the Weil conjectures, namely the estimate of Bombieri and Birch on a three-dimensional variant of a Kloosterman sum. Furthermore, the Ramanujan sums. . . make a crucial appearance. . . This improvement over the square root heuristic, which is ultimately due to the presence of a Ramanujan sum inside this three-dimensional exponential sum in certain degenerate cases, is crucial to Zhang's argument." - Terence Tao

Faux symmetry

For the record

The first interesting "supercharacter plots" were discovered by my 2012 REU group. In fact, they discovered an entirely new class of intriguing exponential sums.

Faux symmetry

For the record

The first interesting "supercharacter plots" were discovered by my 2012 REU group. In fact, they discovered an entirely new class of intriguing exponential sums.

For your safety

I won't even attempt to describe the math behind the REU plots.
Let's just say that the parameters involved are

- a modulus n,
- a dimension d,
- a list $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ of integers.

Faux symmetry

For the record

The first interesting "supercharacter plots" were discovered by my 2012 REU group. In fact, they discovered an entirely new class of intriguing exponential sums.

For your safety

I won't even attempt to describe the math behind the REU plots.
Let's just say that the parameters involved are

- a modulus n,
- a dimension d,
- a list $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ of integers.

Beware of faux symmetry

A puzzling feature of some REU plots is "faux symmetry" - the sneaky appearance of fraudulent large scale symmetry!

36-fold faux symmetry, 12 -fold rotational symmetry

15-fold faux symmetry, 3-fold rotational symmetry

$$
n=12, d=7, \mathrm{x}=(1,1,1,1,1,1,6)
$$

7-fold faux symmetry, no rotational symmetry

20-fold faux symmetry, 5-fold rotational symmetry

Large scale order

Certain families of plots exhibit "coherence" and their asymptotic behavior can be finely described.

Large scale order

Certain families of plots exhibit "coherence" and their asymptotic behavior can be finely described.

Theorem

Fix n and d and let $X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$ be a S_{d}-orbit in $(\mathbb{Z} / n \mathbb{Z})^{d}$. Suppose that the $d \times r$ matrix $A=\left[\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{r}\end{array}\right]$ can be row reduced modulo n to obtain a simpler matrix $B=\left[\mathbf{b}_{1} \mathbf{b}_{2} \ldots \mathbf{b}_{r}\right]$. If the final k rows of B are zero, then the image of $\sigma_{X}:(\mathbb{Z} / n \mathbb{Z})^{d} \rightarrow \mathbb{C}$ "roughly approximates" the image of the function $g: \mathbb{T}^{d-k} \rightarrow \mathbb{C}$ defined by

$$
g\left(z_{1}, z_{2}, \ldots, z_{d-k}\right)=\sum_{\ell=1}^{r} \prod_{j=1}^{d-k} z_{j}^{b_{j \ell}}
$$

Large scale order

Certain families of plots exhibit "coherence" and their asymptotic behavior can be finely described.

Theorem

Fix n and d and let $X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$ be a S_{d}-orbit in $(\mathbb{Z} / n \mathbb{Z})^{d}$. Suppose that the $d \times r$ matrix $A=\left[\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{r}\end{array}\right]$ can be row reduced modulo n to obtain a simpler matrix $B=\left[\mathbf{b}_{1} \mathbf{b}_{2} \ldots \mathbf{b}_{r}\right]$. If the final k rows of B are zero, then the image of $\sigma_{X}:(\mathbb{Z} / n \mathbb{Z})^{d} \rightarrow \mathbb{C}$ "roughly approximates" the image of the function $g: \mathbb{T}^{d-k} \rightarrow \mathbb{C}$ defined by

$$
g\left(z_{1}, z_{2}, \ldots, z_{d-k}\right)=\sum_{\ell=1}^{r} \prod_{j=1}^{d-k} z_{j}^{b_{j \ell}}
$$

Translation

Hummingbirds and manta rays exist, mathematically speaking.

$$
n=47, d=3, \mathrm{x}=(1,2,44)
$$

$$
n=73, d=3, \mathbf{x}=(1,2,70)
$$

$$
n=17, d=4, \mathbf{x}=(0,1,1,15)
$$

$$
n=27, d=4, \mathbf{x}=(0,1,1,25)
$$

$$
n=47, d=4, x=(0,1,1,45)
$$

THE COLLEGE MATHEMATICS JOURNAL

- Analyzing the National Football League's new overtime system
- William Neile's discovery of how to measure "a Crooked line"
- Review of smartphone apps for graph theory

College Mathematics Journal, January 2016

$$
n=30, d=4, \mathbf{x}=(5,6,6,3)
$$

$$
n=30, d=4, \mathbf{x}=(0,1,1,28)
$$

to swim.

Andrew Turner '14

EVEN AS A SEVENTH GRADER, ANDREW TURNER ' 14 knew that Harvey Mudd College was the right place for him. In high school, he excelled in mathematics and physics and augmented his knowledge by taking classes at the University of Missouri near his hometown of Ashland. His father, a scientist and musician, taught Turner music theory to augment piano lessons, band and choir activities.

When it came time to select his acadernic focus, Turner went straight for the rigor and became a physics and mathematics double major, managing a schedule overload (more than 18 units) every semester.

During his first-year summer, he focused on physics, interning at Los Alamos National Laboratories where he worked on modeling the fluid and thermodynamics of laser chemical vapor deposition. "I learned a ton of numerical
My bolance tip:
Combine work and
play. lt's good for
time management play. It's good for
time management and sanity.
analysis and partial differential equations with the help of a great team. I was thrown into deep water, but I learned how to swim," he says.

This past summer, as the recipient of a Fletcher Jones Fellowship through the

Claremont Center for the Mathematical Sciences, he focused on math, exploring, with Pomona College Professor Stephan Garcia, the new subject of supercharacter theory, a powerful algebraic mechanism which his team used to study certain exponential sums that arise in number theory. Tumer is coauthor of the paper "Supercharacters, exponential sums, and the uncertainty principle," which has been submitted for publication, and he is working with Garcia and his team on another.

Next summer, Turner is debating a math or physics internship versus a teaching assistant position at the Harvard Summer Science Program. He attended the camp in 2009 and studied the position of a near-earth asteroid, writing code to determine the asteroid's orbital elements.

Despite his hectic academic schedule, Turner still plays piano and sings (he's a member of the Claremont Chamber Choir). Regarding science and music, he's still deciding which he'll pursue as a profession and which as a hobby. For now, Turner said, obtaining a Ph.D. in mathematics or physics sounds like a good plan, but only after spending some time traveling, perhaps in Norway, Finland or New Zealand.

Harvey Mudd College Bulletin, Fall 2012.

Further research

Certain supercharacter plots resemble diffraction patterns produced by quasicrystals - chemical structures which are three-dimensional, physical, real-world analogues of Penrose tilings (Dan Shechtman earned the 2011 Nobel Prize in Chemistry for their discovery).

A Penrose tiling is a certain aperiodic tiling of the plane with "faux" five-fold symmetry.

Laue diffraction pattern for the chemical $\mathrm{Al}_{65} \mathrm{Cu}_{15} \mathrm{Co}_{20}$

Plot of all supercharacters arising from the action of S_{4} on $(\mathbb{Z} / 10 \mathbb{Z})^{4}$

Both images together
© J.L. Brumbaugh (POM '13)
(2) Madeleine Bulkow (SCR '14, UCLA)

3 Paula Burkhardt (POM '16, UC Berkeley)
(4) Alice Z.-Y. Chan (POM '14, UC San Diego)
(5) Gabriel Currier (POM '16)
(6) Christopher Fowler (POM '12, U. Washington)
(1) Luis A. Garcia German (POM '14, Washington U.)
(3) Trevor Hyde (University of Michigan)
(0) Bob Lutz (POM '13, University of Michigan)
(10) Matt Michal (CGU '15)
(1i) Hong Suh (POM '16, UC Berkeley)
(2. Andrew P. Turner (HMC '14, MIT)
(1) Brumbaugh, J.L. ('13), Bulkow, M. (SCR '14), Fleming, P.S., Garcia German, L.A. ('14), Garcia, S.R., Karaali, G., Michal, M. (CGU '15), Turner, A.P. (HMC '14), Supercharacters, exponential sums, and the uncertainty principle, J. Number Theory 144 (2014), 151-175.
(2) Brumbaugh, J.L. ('13), Bulkow, M. (SCR '14), Garcia German, L.A. ('14), Garcia, S.R., Michal, M. (CGU '15), Turner, A.P. (HMC '14), The graphic nature of the symmetric group, Experimental Math. 22 (2013), no. 4, 421-442.
3 Burkhardt, P. ('16), Chan, A.Z.-Y. ('14), Currier, G. ('16), Garcia, S.R., Luca, F., Suh, H. ('16), Visual properties of generalized Kloosterman sums, J. Number Theory 160 (2016), 237-253.
4. Diaconis, P., Isaacs, I.M., Supercharacters and superclasses for algebra groups, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2359-2392.
(5) Duke, W.D., Garcia, S.R., Lutz, B. ('13), The graphic nature of Gaussian periods, Proc. Amer. Math. Soc. 143 (2015), no. 5, 1849-1863.

6 Fowler, C. ('12), Garcia, S.R., Karaali, G., Ramanujan sums as supercharacters, Ramanujan J. 35 (2014), no. 2, 205-241.
(7) Garcia, S.R., Hyde, T., Lutz, B., Gauss' hidden menagerie: from cyclotomy to supercharacters, Notices Amer. Math. Soc. 62 (2015), no. 8, 878-888.
(8) Lutz, B., Graphical cyclic supercharacters for composite moduli, Proc. Amer. Math. Soc. (in press).

