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Abstract

At the age of eighteen, Gauss established the constructibility of the 17-gon, a result that had
eluded mathematicians for two millennia. At the heart of his argument was a keen study of certain
sums of complex exponentials, known now as Gaussian periods. It turns out that these classical
objects, when viewed appropriately, exhibit dazzling array of visual patterns of great complexity
and remarkable subtlety. (Joint work with Bill Duke, Trevor Hyde, and Bob Lutz, and others).
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Foundation.
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Modular Arithmetic

@ If nis a positive whole number and x is an integer, then

‘x (mod n) = the remainder of x upon division by n.‘

@ x (mod n) is always between 0 and n — 1.

@ For instance

o 1(mod5) =1, e 3-4(mod 5) =2,
o 7(mod 5) =2, o 2°(mod 5) = 2,
o 18(mod 5) = 3, o 3°(mod 5) = 3,
o —1(mod5) = 4, o 45 (mod 5) = 4.

@ You use modular arithmetic all the time!
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@ Computing with hours is arithmetic modulo 12,
e Computing with minutes is arithmetic modulo 60,

e Computing with seconds is arithmetic modulo 60.
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Order of an integer modulo n

n 1/2|3/4|5][6] 7] 8] 9| 10
2" 2/4[8|16|32|64 128256 | 512 | 1024
2"(mod 10) [2[4 |86 |2 4] 8 | 6 | 2 | 4
2"(mod 5) |2 |4 |3 [ \ 2143 |12 4
"

Definition

Let gcd(a, n) = 1. The multiplicative order of a modulo n is the
smallest positive exponent d for which a? = 1 (mod n).
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Not so random walks

@ Let n be a large whole number.
@ Let a be a whole number with ged(a, n) = 1.
O Let d be the multiplicative order of a modulo n.

@ For each integer x, take a d-step walk starting from (0, 0) with

unit steps in the directions ax, a’x, a3x, ..., a%x (mod n).
4 » 4
2\\ '
Aommmmm e »> 0 3 -mmmmm e R s »> 0
3,/ S
| /’l AN
Allowable directions when n = 5 Allowable directions when n = 6

@ Mark the endpoint of each walk with a colored dot.
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Let n =7 and a = 2. Working modulo 7 we have
a=2, a® = 4, =1, a*t =2, @ =4,...
so our walk has 3 steps. If x = 4, our steps will be in the directions

ax=2-4=1, Px=4-4=2, SBx=1-4=4.

Allowable directions when n = 7 Walk with steps in directions 1, 2, 4.
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To simplity,
make things complex



Complex exponentials

Euler's Formula

e19

= cosf + isinf,

sin 6

cos
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Definition
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What is really going on?

To be more precise

We are plotting the function f : Z — C defined by

f(x):zd:e<a%<). (i = v=1)

Amazingly

These exponential sums first arose in the work of Gauss
(1777-1855). Regarding the simplest case:

At length we achieved a demonstration of the very elegant theorem
mentioned before in May, 1801, which we had sought for more than
four years with all efforts. — C.F. Gauss, August 30, 1805
However, the graphical patterns we found went unnoticed for over
two hundred years!
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From Cyclotomy to Supercharacters

Stephan Ramon Garcia, Trevor Hyde, and Bob Lutz
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It's not all about
pretty pictures



Theorem (W. Duke, SRG, B. Lutz '13)
Suppose that p|n and p = 1 (mod 4) is prime. Let

Q={meZ/pZ: (m) =1}

P
denote the set of distinct nonzero quadratic residues modulo p. If
Fr={in/k+1:jedyyu{jnk—1:jeJ_}
holds where
Jy={ag+b:ge @} and J_={cq—b:qge Qy}

for integers a, b, c coprime to p with (2) = —(5), then ox(y) belongs to the
real interval [1 — p, p — 1] whenever pﬁ/, and otherwise belongs to the ellipse
described by the equation (Rez)? + (Imz)?/p = 1.




Theorem (W. Duke, SRG, B. Lutz '13)

Suppose that p|n and p = 1 (mod 4) is prime. Let

Q= {mez/pt: (2) =1
denote the set of distinct nonzero quadratic residues modulo p. If
F={nk+1:jel}u{jnk—1:jeJ}
holds where
Jy={ag+b:qe Qp} and J_={cq—b:qe Qp}

for integers a, b, c coprime to p with (2) = —(5), then ox(y) belongs to the
real interval [1 — p, p — 1] whenever pﬁ/, and otherwise belongs to the ellipse
described by the equation (Rez)? + (Imz)?/p = 1.

Certain combinations of parameters yield ellipses.
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Theorem (W. Duke, SRG, B. Lutz '13)

Let r belong to Z/nZ, and suppose that (r,n) = & for some

positive divisor d of n, so that £ = % is a unit modulo n. Also let

Y :Z/nl — Z/dZ
denote the natural homomorphism.
i) The images of oy, or(; ), and oy, (1 are equal.
(r,n) $a(T)
r

(i) The image in (i), when scaled by % is a subset of the
image of or¢.




Theorem (W. Duke, SRG, B. Lutz '13)

Let r belong to Z/nZ, and suppose that (r,n) = & for some

rd

positive divisor d of n, so that § = = is a unit modulo n. Also let

Y :Z/nl — Z/dZ
denote the natural homomorphism.
i) The images of oy, or(; ), and oy, (1 are equal.
(r,n) $a(T)
r

(i) The image in (i), when scaled by % is a subset of the
image of or¢.

Translation

| A

If a bunch of n's and a's are chosen appropriately, the
corresponding images “grow” or “nest.”
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Theorem (W. Duke, SRG, B. Lutz '13)

Let ox be a cyclic supercharacter of 7/qZ, where q is a nonzero power of an
odd prime p. If X = Al and |X| = d divides p — 1, then the image of ox is
contained in the image of the function g : T*Y) — C defined by

—1¢(d)—1

b,
g(z1,22,- -+, 24(d)) Z H 74

where the integers by j are given by

#(d)—1

Z by;t! (mod ®4(t)).

For a fixed d, as q becomes large, the image of ox fills out the image of g, in
the sense that, given € > 0, there exists some q = 1 (mod d) such that if

ox :2/qZ — C is a cyclic supercharacter with |X| = d, then every open ball of
radius € > 0 in the image of g has nonempty intersection with the image ofcrx.)




Theorem (W. Duke, SRG, B. Lutz '13)

Let ox be a cyclic supercharacter of 7/qZ, where q is a nonzero power of an
odd prime p. If X = Al and |X| = d divides p — 1, then the image of ox is
contained in the image of the function g : T*Y) — C defined by

—1¢(d)—1

b,
g(z1,22,- -+, 24(d)) Z H 74

where the integers by j are given by

#(d)—1

Z by;t! (mod ®4(t)).

For a fixed d, as q becomes large, the image of ox fills out the image of g, in
the sense that, given € > 0, there exists some q = 1 (mod d) such that if

ox :2/qZ — C is a cyclic supercharacter with |X| = d, then every open ball of
radius € > 0 in the image of g has nonempty intersection with the image ofcrx.)

Translation

Plots can “fill out” the image of simple “mapping functions”
g : T™ — C from high-dimensional tori into C.
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Exponential sums

S. RAMANUJAN H. KLOOSTERMAN
n n . _
27ijx 2mi(al+bl)
e )
j=1 =1
(j,n)=1 (£,n)=1

My students and | established a general framework under which a
wide variety of exponential sums of interest in number theory can
be studied. Some of these sums, such as generalized Kloosterman

sums, yield interesting images as well.
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Alice Chan, Cooper Galvin & Gabriella Heller Win National Science

Foundation Fellowships
By 5 Cynthia Peters 1:30 pm April 28, 2014 Students, Research

Pomona College seniors Alice Chan, Galvin Cooper and Gabriella Heller have
been awarded National Science Foundation (NSF) Graduate Research
Fellowships along with seven Pomona alumni. The grants provide an annual
stipend of $32,000 for three years and a $12,000 cost-of-education allowance to
the institution. Recipients are selected “based on their demonstrated potential
for significant achievements in science and engineering.”

Alice Chan, a mathematics major from Westford, Mass., will pursue a Ph.D. in
mathematics, at UC San Diego. Her NSF proposal, "Reconstruction without
Phase and Finite Frame Decomposition," involves applying frame theory to the
field of compressed sensing, which studies the problem of reconstructing
signals when they are sparse in some domain. This is critical, she says, in
areas such as reducing the length of MRI scanning sessions and increasing the
power of computational photography.

At Pomona, she has conducted research with Prof. Stephan Garcia and fellow
students Luis Garcia German and Amy Shoemaker (both PO'14), which has
resulted in the publication "On the matrix equation XA+AXAT=0, II: Type 0-I
interactions” in the journal Linear Algebra and its Applications. Her senior thesis
focuses on an extension of Kloosterman sums, which comprise a standard

tool in analytic number theory.

Alice Chan

http://www.pomona.edu/news/2014/04/28-nsf-fellowships.aspx


http://www.pomona.edu/news/2014/04/28-nsf-fellowships.aspx

What's the big deal about exponential sums?

Concerning Zhang's work on bounded gaps between primes:

“For the Type | and Type Il sums, it was the classical Weil bound on
Kloosterman sums that were the key source of power saving. .. For
the Type Il sums, one needs a significantly deeper consequence of
the Weil conjectures, namely the estimate of Bombieri and Birch on
a three-dimensional variant of a Kloosterman sum. Furthermore,
the Ramanujan sums. .. make a crucial appearance. .. This
improvement over the square root heuristic, which is ultimately due
to the presence of a Ramanujan sum inside this three-dimensional
exponential sum in certain degenerate cases, is crucial to Zhang's
argument.” - Terence Tao

Source: http://terrytao.wordpress.com/2013/06/14/estimation-of-the-type-iii-sums/


http://terrytao.wordpress.com/2013/06/14/estimation-of-the-type-iii-sums/
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intriguing exponential sums.

For your safety
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Let's just say that the parameters involved are

@ a modulus n,

@ a dimension d,

@ alist x = (x1,x2,...,x%q) of integers.




Faux symmetry

For the record

The first interesting “supercharacter plots” were discovered by my
2012 REU group. In fact, they discovered an entirely new class of
intriguing exponential sums.

For your safety

| won't even attempt to describe the math behind the REU plots.
Let's just say that the parameters involved are

@ a modulus n,
@ a dimension d,

@ alist x = (x1,x2,...,x%q) of integers.

Beware of faux symmetry

| \

A puzzling feature of some REU plots is “faux symmetry” - the
sneaky appearance of fraudulent large scale symmetry!




n=10,d =8, x=(0,1,3,8,8,8,8,8)

5-fold rotational symmetry



(1,1,6)
-fold rotational symmetry

=3 x=

n=096, d
36-fold faux symmetry, 12



n=24d=5 x=(1,1,2,2,2)

15-fold faux symmetry, 3-fold rotational symmetry



n=12,d=7x=(1,1,1,1,1,1,6)

7-fold faux symmetry, no rotational symmetry



n=25d=4,x=(1,1,1,2)

20-fold faux symmetry, 5-fold rotational symmetry



Large scale order

Certain families of plots exhibit “coherence” and their asymptotic
behavior can be finely described.
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Certain families of plots exhibit “coherence” and their asymptotic
behavior can be finely described.

Fix n and d and let X = {x1,%2,...,%,} be a Sy-orbit in (Z/nZ)“.
Suppose that the d x r matrix A = [x1 X2 ... X,] can be row reduced

modulo n to obtain a simpler matrix B = [by by ... b,]. If the final k
rows of B are zero, then the image of ox : (Z/nZ)? — C “roughly
approximates” the image of the function g : T~k — C defined by

P e
g(z1, 22, ., Zd—k) ZH
{=1 j=1
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Suppose that the d x r matrix A = [x1 X2 ... X,] can be row reduced

modulo n to obtain a simpler matrix B = [by by ... b,]. If the final k
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Hummingbirds and manta rays exist, mathematically speaking.
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n=47,d =3, x=(1,2,44)



n=73,d=3,x=(1,2,70)



n=173,d =3, x = (1,2,170)
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n=17,d =4 x = (0,1,1,15)



=(0,1,1,25)

n=27,d=4, x






College Mathematics Journal, January 2016



(1,2,2,29)

X =

n=30,d=4,






(3,4,4,1)

n=30d=4, x









LAy

= (10,11,11,8)

n=30d=4, x



= (15,16, 16, 13)

n=30,d=4, x
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n=30d=4 x=(0,1,1,28)
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“ |1 was thrown into deep water, but eqrned hOW to swim. ”

@Q

Andrew Turner '14

EVEN AS A SEVENTH GRADER, ANDREW TURNER
14 knew that Harvey Mudd College was the right place for
him. In high school, he excelled in mathematics and physics and

®
e

e |

Claremont Center for the Mathematical Scences, he focused

‘on math, exploring, with Pomona Colege Professor Stephan

Garcia, the new subject of supercharacter theory, a powerful
¢ Tt =

Jedge by taking cl the Universiy of
Missouri near his hometown of Ashland. His father,a scientist
and musician, taughe Turner music theory o augment piano
lessons, band and choir activities.

‘When it came time to select his academic focus, Turner
‘went straight for the rigor and became a physics and mathemat-
ics double major, managing a schedule overload (more than 18
units) every semester.

During his istyear summer, he focused on physic, intern-

‘exponential sums that arise in number theory. Turner s co-
author of the paper “Suy exponential sums, and the
uncertainty principle;” which has been submitted for publica-
tion, and he is working with Garcia and his team on another.

Next summer, Turner is debating a math or physics intern-
ship versus 2 teaching assistant position at the Harvard Summer
Science Program. He attended the camp in 2009 and studied
the position of a near-arch asteroid, writing code to determine

he asteroid’ orbiral cl

ing at Los Alamos National L e worked on
‘modeling the fluid and thermodynamics of laser chemical vapor
deposition. I learned a ton of numerical

My balance tip analysis and partial differencial equa-

Combine work and  tions with the help of a great team.
play.Ifs good for 1 was thrown inco decp wtes, buc |
el o s e

and sanity. “This past summer, as the recipient of

a Fletcher Jones Fellowship through the

Despite his hectic academic schedule, Turner sdll plays pia-
10 and sings (he's a member of the Claremont Chamber Chor).
Regarding science and music, he’s still deciding which hell
pursue as a profession and which as a hobby. For now; Turner
said, obtaining 2 Ph.D. in mathematics or physics sounds like a

od plan, but only after spending some time traveling, perhaps
in Norway, Finland or New Zealand.

Harvey Mudd College Bulletin, Fall 2012.



Further research

Certain supercharacter plots resemble diffraction patterns produced
by quasicrystals — chemical structures which are three-dimensional,
physical, real-world analogues of Penrose tilings (Dan Shechtman
earned the 2011 Nobel Prize in Chemistry for their discovery).

VAT T AT TS A ST AT A TS
5"%‘34;‘%‘4;%#‘.%%4
AN AT ALK AR
Y PP e Y P S
VvV VYA SV
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AT %ﬁ'«'ﬁgﬁ;’
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A Penrose tiling is a certain aperiodic tiling of the plane with “faux” five-fold symmetry.



Laue diffraction pattern for the chemical AlgsCuy5Cong
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Plot of all supercharacters arising from the action of S; on (Z/10Z)*






Super Characters

J.L. Brumbaugh (POM '13)

Madeleine Bulkow (SCR '14, UCLA)

Paula Burkhardt (POM 16, UC Berkeley)

Alice Z.-Y. Chan (POM '14, UC San Diego)
Gabriel Currier (POM '16)

Christopher Fowler (POM '12, U. Washington)
Luis A. Garcia German (POM '14, Washington U.)

e

Trevor Hyde (University of Michigan)

Bob Lutz (POM '13, University of Michigan)
Matt Michal (CGU '15)

Hong Suh (POM '16, UC Berkeley)

& Andrew P. Turner (HMC '14, MIT)
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