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Euclid of Alexandria, 300BC
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Euclid...

is considered the “Father of Geometry”

wrote The Elements, one of the most influential works in
the history of mathematics, serving as the main textbook
for geometry from the time of its publication until the late
19th or early 20th century.
deduced, in The Elements, the principles of what is now
called Euclidean geometry from a small set of axioms.
other non-Euclidean geometries emerged in the late 19th
century.
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one of the oldest surviving fragments of The Elements, 100AD
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Euclid, depicted in Rafael’s School of Athens (1510)
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The Infinitude of Primes

Let’s recall:

Definition

A prime number is a natural number greater than 1 that
has no positive divisors other than 1 and itself.
A composite number is a natural number greater than 1
that is not prime.

Note the number 1 is neither a prime nor composite. It is
generally referred to as a unit.
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In Book 9 of The Elements, Euclid established the following.

Main Theorem
There exists an infinite number of primes.
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Besides Euclid’s original proof, several other proofs of this
fundamental result have been given by

Euler (18th century)

Erdös (20th century)
Furstenberg (1955) (a topological proof)
Pinasco (2009)
Whang (2010)
and more.
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Euclid’s Proof (300BC)

First we recall the all-important ...

Fundamental Theorem of Arithmetic
For all n ∈ Z such that n > 1, n can be represented uniquely as
the product of primes.

Definition
Let a,m ∈ Z. An arithmetic sequence is a set of integers of the
form

a + mZ = {a + mn : n ∈ Z}

For example, the set {...,−11,−4,3,10,17,24, ...} is an
arithmetic progression, where a = 7 and m = 3.
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Lemma
For all integers m not equal to −1 or 1,

mZ+ 1 ⊆ Z\(mZ).

I.e., one more than a multiple of m is not a multiple of m.

Proof.
Let mk + 1 ∈ mZ+ 1 for some k ∈ Z. Suppose by way of
contradiction that mk + 1 is a multiple of m. Then there exists
n ∈ Z such that mk + 1 = mn. Thus 1 = m(n − k) and m
divides 1. So m must be either −1 or 1, which is contradiction.
We conclude mZ+ 1 ⊆ Z\(mZ).
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Proof of the Infinitude of Primes (Euclid).

Let F = {p1, . . . ,pn} be any finite list of primes. We show
there is a prime not on our list F .
Suppose that N = p1p2 . . . pn + 1 were not prime.
As N > 1, by the FTA there exists a prime p that divides N.
If p /∈ F , then there is prime not on our list and we’re done.
Otherwise, p ∈ F and note N ∈ pZ+ 1.
As p > 1, it follows by the Lemma that
N ∈ pZ+ 1 ⊆ Z\(pZ).
This is contradiction since p divides N. We conclude N is a
prime, and furthermore it cannot be on our list F .
Since for any finite list F of primes there is a prime not on
our list, we conclude the set P of primes is infinite.
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Hillel Furstenberg
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discovered a topological proof of the Infinitude of Primes in
1955, while an undergraduate at Yeshiva University

a curious and unusual proof, seemingly very different than
any other proofs out there
published in the American Mathematical Monthly
currently at Hebrew University of Jerusalem, works in
differential geometry and ergodic theory
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The Evenly-Spaced Integer Topology on Z

Definition
The evenly-spaced integer topology on Z consists of the
following collection of open sets:

{U ⊆ Z : aZ+ b ⊆ U for some a,b ∈ Z}.

In other words, a non-empty set of integers is open in this
space if and only if it contains an arithmetic sequence.
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This amazing thing about this topology is that it actually is a
topology! To help see why, let’s consider this question:

Question
What can we say about the intersection of finitely many
arithmetic sequences? That is, what are the possibilities for

n⋂
i=1

(ai + miZ),

where a1, . . . ,an and m1, . . . ,mn are integers?
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We see that:

Lemma
A finite intersection of arithmetic sequences is an arithmetic
sequence (and thus infinite), or empty.

It follows from the previous Lemma that the finite
intersection of open sets is open in the Evenly-Spaced
Integer Topology.
Other conditions for a topology are also satisfied.
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Two curious properties of this space:
1 an arithmetic sequence is both open and closed (clopen)

Why?

2 a finite set is not open (unless it is empty) as it cannot
contain an infinite arithmetic sequence.
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Proof (Furstenberg, 1955).

Suppose by way of contradiction that the set of primes
were finite.
By the Fundamental Theorem of Arithmetic,⋃

p prime

pZ = Z\{−1,1}.

For each prime p, the arithmetic sequence pZ is closed.
As the finite union of closed sets is closed, the set on the
left above is closed.
Hence, the set on the right is closed, implying {−1,1} is
open.
This is a contradiction since finite sets cannot be open.
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Mercer’s Variation

In 2009, Mercer “unpackaged” the topology in Furstenberg’s
proof to uncover the underlying number theory. We give
Mercer’s proof, also published in the Monthly.
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Lemma
If m ≥ 2, then

Z\(mZ) = (1 + mZ) ∪ . . . ∪ ((m − 1) + mZ)

I.e., Z\(mZ) is a finite union of arithmetic sequences.
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Proof of the Infinitude of Primes (Mercer’s Unpackaging).

Suppose that the set of primes were finite, and let
p1, . . . ,pn represent all the prime numbers.
the FTA implies that every integer other than 1 and −1 are
multiples of some prime. Put another way, the numbers 1
and −1 are the only integers that are not multiples of any
prime.
it follows that

{−1,1} = Z\(p1Z) ∩ Z\(p2Z) ∩ · · · ∩ Z\(pnZ).

each Z\(piZ) above is a finite union of arithmetic
sequences, by the previous Lemma.
so {−1,1} is then a finite intersection of finite unions of
arithmetic sequences.

Nathan Carlson A Connection between Two Proofs of the Infinitude of Primes



Euclid and History
Euclid’s Proof of the Infinitude of Primes

Furstenberg’s Proof
Mercer’s Variation

A Connection

Proof of the Infinitude of Primes (Mercer’s Unpackaging).

Suppose that the set of primes were finite, and let
p1, . . . ,pn represent all the prime numbers.

the FTA implies that every integer other than 1 and −1 are
multiples of some prime. Put another way, the numbers 1
and −1 are the only integers that are not multiples of any
prime.
it follows that

{−1,1} = Z\(p1Z) ∩ Z\(p2Z) ∩ · · · ∩ Z\(pnZ).

each Z\(piZ) above is a finite union of arithmetic
sequences, by the previous Lemma.
so {−1,1} is then a finite intersection of finite unions of
arithmetic sequences.

Nathan Carlson A Connection between Two Proofs of the Infinitude of Primes



Euclid and History
Euclid’s Proof of the Infinitude of Primes

Furstenberg’s Proof
Mercer’s Variation

A Connection

Proof of the Infinitude of Primes (Mercer’s Unpackaging).

Suppose that the set of primes were finite, and let
p1, . . . ,pn represent all the prime numbers.
the FTA implies that every integer other than 1 and −1 are
multiples of some prime. Put another way, the numbers 1
and −1 are the only integers that are not multiples of any
prime.

it follows that

{−1,1} = Z\(p1Z) ∩ Z\(p2Z) ∩ · · · ∩ Z\(pnZ).

each Z\(piZ) above is a finite union of arithmetic
sequences, by the previous Lemma.
so {−1,1} is then a finite intersection of finite unions of
arithmetic sequences.

Nathan Carlson A Connection between Two Proofs of the Infinitude of Primes



Euclid and History
Euclid’s Proof of the Infinitude of Primes

Furstenberg’s Proof
Mercer’s Variation

A Connection

Proof of the Infinitude of Primes (Mercer’s Unpackaging).

Suppose that the set of primes were finite, and let
p1, . . . ,pn represent all the prime numbers.
the FTA implies that every integer other than 1 and −1 are
multiples of some prime. Put another way, the numbers 1
and −1 are the only integers that are not multiples of any
prime.
it follows that

{−1,1} = Z\(p1Z) ∩ Z\(p2Z) ∩ · · · ∩ Z\(pnZ).

each Z\(piZ) above is a finite union of arithmetic
sequences, by the previous Lemma.
so {−1,1} is then a finite intersection of finite unions of
arithmetic sequences.

Nathan Carlson A Connection between Two Proofs of the Infinitude of Primes



Euclid and History
Euclid’s Proof of the Infinitude of Primes

Furstenberg’s Proof
Mercer’s Variation

A Connection

Proof of the Infinitude of Primes (Mercer’s Unpackaging).

Suppose that the set of primes were finite, and let
p1, . . . ,pn represent all the prime numbers.
the FTA implies that every integer other than 1 and −1 are
multiples of some prime. Put another way, the numbers 1
and −1 are the only integers that are not multiples of any
prime.
it follows that

{−1,1} = Z\(p1Z) ∩ Z\(p2Z) ∩ · · · ∩ Z\(pnZ).

each Z\(piZ) above is a finite union of arithmetic
sequences, by the previous Lemma.

so {−1,1} is then a finite intersection of finite unions of
arithmetic sequences.

Nathan Carlson A Connection between Two Proofs of the Infinitude of Primes



Euclid and History
Euclid’s Proof of the Infinitude of Primes

Furstenberg’s Proof
Mercer’s Variation

A Connection

Proof of the Infinitude of Primes (Mercer’s Unpackaging).

Suppose that the set of primes were finite, and let
p1, . . . ,pn represent all the prime numbers.
the FTA implies that every integer other than 1 and −1 are
multiples of some prime. Put another way, the numbers 1
and −1 are the only integers that are not multiples of any
prime.
it follows that

{−1,1} = Z\(p1Z) ∩ Z\(p2Z) ∩ · · · ∩ Z\(pnZ).

each Z\(piZ) above is a finite union of arithmetic
sequences, by the previous Lemma.
so {−1,1} is then a finite intersection of finite unions of
arithmetic sequences.

Nathan Carlson A Connection between Two Proofs of the Infinitude of Primes



Euclid and History
Euclid’s Proof of the Infinitude of Primes

Furstenberg’s Proof
Mercer’s Variation

A Connection

Proof, con’t.

finite intersections distribute over finite unions
{−1,1} is then a finite union of finite intersections of
arithmetic sequences.
By a previous lemma, finite intersections of arithmetic
sequences are empty or infinite, and so then will unions of
these intersections.
thus {−1,1} is either empty or infinite which, on most days
of the week, it is decidely not.
this is a contradiction, showing that the primes are infinite.
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A Connection Between the Proofs

Suppose the set of primes P where finite. Let
P = {p1, . . . ,pn}.

Let A ⊆ Z be all the integers that are not multiples of any
prime. Then,

A =
n⋂

i=1

Z\(piZ).

The Fundamental Theorem of Arithmetic says that

A = {−1,1}.

Observe that in Mercer’s variation on Furstenberg’s proof,
the key idea is to show that A is infinite, contradicting that
A = {−1,1}. (Thus there must be an infinitude of primes).
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A straightforward way to see that A is infinite (if the set of
primes P = {p1, . . .pn} were finite):

Let m ∈ Z.

Notice that for any prime pi , the product mp1p2 · · · pn is a
multiple of pi .
By a previous Lemma, it follows that

mp1p2 · · · pn + 1 ∈ Z\(piZ).

So,

mp1p2 · · · pn + 1 ∈
n⋂

i=1

Z\(piZ) = A.

Since the above holds for any m ∈ Z, we see that A is
infinite.
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Now let’s go back and look at Euclid’s original proof. We see
that

A finite set of primes {p1, . . . ,pn} and the number
N = p1p2 · · · pn + 1 is considered.

In essence, it is shown in that proof that

p1p2 · · · pn + 1 ∈
n⋂

i=1

Z\(piZ) = A.

But p1p2 · · · pn + 1 > 1 and A = {−1,1}. This is a
contradiction.
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In summary, we see that both proofs are very similar, in the
following way:

Suppose the set of primes P = {p1, . . . ,pn} were finite.

Then the Fundamental Theorem of Arithmetic guarantees
that

A =
m⋂

i=1

Z\(piZ) = {−1,1}.

The Furstenberg/Mercer proof is the observation that if P
were finite then A would be infinite.
Euclid’s proof is the observation that if P were finite then
p1p2 · · · pn + 1 ∈ A
Both observations contradict that A = {−1,1}.
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N. A. Carlson, A Connection between Furstenberg’s and
Euclid’s proofs of the Infinitude of Primes, Amer. Math.
Monthly 121 (2014), 444.

Thank you!
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