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The Kepler Problem

Determine the motion of a planet around a sun.

Can be formulated in Hamiltonian mechanics:

Sun at (0, 0, 0), planet at (x , y , z)

(px , py , pz) = momentum of planet

R6 = (x , y , z , px , py , pz) = phase space

r =
√

x2 + y2 + z2, c = constant
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The Kepler Problem

Problem (Hamiltonian formalism)

Integrate the flow of the Hamiltonian H : R6 → R where

H = K + U = total energy

K = 1
2(p2

x + p2
y + p2

z ) = kinetic energy

U = − c
r = (gravitational) potential energy

Here, integrate the flow means solve the system of differential
equations

dx

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂x
,

known as Hamilton’s equations.
Note: U is the fundamental solution to the Laplacian
∆ = ∂2

∂x2
+ ∂2

∂y2 + ∂2

∂z2
.
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Kepler’s Laws of Planetary Motion

1 Planetary orbits are ellipses with the sun at one focus

2 Equal areas are swept out in equal times

3 T 2 = ka3, where T = period of orbit and a = ‘size’ of orbit
(length of semi-major axis)
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History of Kepler’s Laws

Tycho Brahe (1546-1601):
Danish astronomer

Lost nose in duel over math formula
Pet moose died from
getting drunk and falling down stairs
“He lived like a sage
and died like a fool”
(Brahe, not moose)

Observed and collected data on planetary orbits
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Johannes Kepler (1571-1630):
German mathematician and astronomer

Assistant and successor to Brahe
Son of a mercenary and a witch (alleged)
Shunned by Galileo and Descartes
Elliptical orbits “a cart-load of dung”

Analyzed Brahe’s data
on orbits (Mars) and found patterns.
These patterns are now known as Kepler’s Laws.
1609: First and Second Laws. 1619: Third Law.
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Isaac Newton (1642-1726/7):
English mathematician and physicist

Greatest mathematician of all time
Greatest scientist of all time
Master of the mint and
prosecutor of counterfeiters

Proved (mathematically) Kepler’s Laws from Newton’s Laws
(including law of gravitation).
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The Second Law

Newton noticed that Second Law holds for any radial system

Second Law ∼= Law of Conservation of Angular Momentum
Implies planetary orbits lie in a plane. Thus, the Kepler
problem in R3 easily reduces to R2.
Partially explains the observation that the sun, moon, and all
planets follow the same path in the sky, called the ecliptic.
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What is a Riemannian manifold?

A smooth manifold is an n-dimensional analogue of a smooth
surface.

Each point has a tangent space isomorphic to Rn.

A Riemannian structure is an inner product 〈·, ·〉 at each
tangent space.
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What is a Riemannian manifold?

Can now measure lengths of curves in M:
l(γ) =

∫ b
a

√
〈γ̇, γ̇〉dt

Induces a distance function (metric): d(p, q) = inf l(γ),

So, a Riemannian manifold is a smooth space where we can
measure distances.
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What is a Riemannian manifold?

Then a geodesic is the shortest path between two points.

Mechanically, think motion of a free particle, with no force acting.
This is Hamiltonian flow of H = K + U if U = 0.

14 / 47



The classical Kepler problem
The curved Kepler problem

The Kepler problem on the Heisenberg group

Background
Kepler’s laws
Kepler’s third law and geometry

What is a Riemannian manifold?

Then a geodesic is the shortest path between two points.
Mechanically, think motion of a free particle, with no force acting.

This is Hamiltonian flow of H = K + U if U = 0.

14 / 47



The classical Kepler problem
The curved Kepler problem

The Kepler problem on the Heisenberg group

Background
Kepler’s laws
Kepler’s third law and geometry

What is a Riemannian manifold?

Then a geodesic is the shortest path between two points.
Mechanically, think motion of a free particle, with no force acting.
This is Hamiltonian flow of H = K + U if U = 0.

14 / 47



The classical Kepler problem
The curved Kepler problem

The Kepler problem on the Heisenberg group

Background
Kepler’s laws
Kepler’s third law and geometry

What is a Riemannian manifold?

Then a geodesic is the shortest path between two points.
Mechanically, think motion of a free particle, with no force acting.
This is Hamiltonian flow of H = K + U if U = 0.

14 / 47



The classical Kepler problem
The curved Kepler problem

The Kepler problem on the Heisenberg group

Background
Kepler’s laws
Kepler’s third law and geometry

The curved Kepler problem

Replace configuration space R3 by a Riemannian manifold M

Usually want constant curvature, often M = Sn or Hn with
n = 2 or 3 (spherical or hyperbolic spaces)

K is still generator of geodesic flow, determined by the metric

Choose U to be fundamental solution to Laplacian ∆M ,
although other approaches exist

Try to integrate flow of Hamiltonian

H = K + U.
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History1

Study of curved Kepler problem (dates are approximate):

1687, Newton: R3, posed and solved

1835, Lobachevsky, Bolyai (independently): H3, posed

1852, Dirichlet: H3, no progress

1860, P. Serret: S2, posed and solved

1870, Schering: H3, partially solved

1873, Lipschitz: S3, posed, partially solved

1885, Killing: S3, reposed

1902, Liebmann: S3 and H3, proved orbits are conics

1903, Liebmann: S2 and H2, proved Bertrand’s theorem

1mostly from Diacu, Perez-Chavela, and Santoprete, The n-body problem in
spaces of constant curvature, Journal of Nonlinear Science
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History

1940, Schrodinger: S2, posed quantum version

1945, Infeld, Schild: Hn, posed quantum version

Modern era (my lifetime), Russians (Kozlov, etc.), Spanish
(Santander, etc.) and North Americans (Diacu, etc.):
Sn and Hn, explicit dynamics, classification of orbits, more

2011-now, Montgomery, Shanbrom: Heisenberg 3-space H,
posed, partially solved
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The curved Kepler problem

The Kepler problem on the Heisenberg group

Background
Kepler’s laws
Kepler’s third law and geometry

Curved Kepler’s Laws

All three laws can be formulated in the curved setting.
Which hold?

First and Second Laws hold in spherical and hyperbolic
geometries

Third law fails. Why?

Short answer: They do not admit dilations
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The curved Third Law

Longer answer: Third Law in R3 follows from fact that
gravitational potential U is homogeneous of degree −1.

Homogeneous only makes sense if we can dilate/scale.

In general, in Rn, a homogeneous potential V of degree −α
will induce dynamics enjoying a version of the Third Law:

T 2 = kaα+2

For the curved Third Law to hold, we need a homogeneous
potential on a metric manifold with dilations.

Q: Which Riemannian manifolds admit dilations?

A: Only Euclidean spaces!
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Thanks Gromov!

Theorem: If a Riemannian manifold M is homogeneous and
admits dilations, then it is Euclidean.

Proof: If the hypotheses are satisfied, then M is isometric to its
tangent cone at any point. Gromov showed that this tangent cone
is Euclidean.

Corollary

In order to obtain a Third Law in a curved Kepler problem, we
must leave the realm of Riemannian manifolds!

But where do we go...?
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The Kepler problem on the Heisenberg group
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The Heisenberg group
The Kepler-Heisenberg problem
Results
Kepler’s laws

Sub-Riemannian Geometry!

Certain sub-Riemannian manifolds admit dilations!

These are like Riemannian manifolds M, except the inner
product 〈·, ·〉 is restricted to certain subspaces of the tangent
spaces, called a distribution D.

So can think of a field of subspaces, and require all curves
tangent to these subspaces.

In other words, certain directions of travel are forbidden.
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The Heisenberg group!

Q: Do all sub-Riemannian manifolds admit dilations?
A: No, but all Carnot groups do.
The Heisenberg group is the simplest.

Definition

The Heisenberg group is the Lie group H homeomorphic to R3,
with group law

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + 1
2(x1y2− x2y1)).

23 / 47



The classical Kepler problem
The curved Kepler problem

The Kepler problem on the Heisenberg group

The Heisenberg group
The Kepler-Heisenberg problem
Results
Kepler’s laws

The Heisenberg group!

Q: Do all sub-Riemannian manifolds admit dilations?

A: No, but all Carnot groups do.
The Heisenberg group is the simplest.

Definition

The Heisenberg group is the Lie group H homeomorphic to R3,
with group law

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + 1
2(x1y2− x2y1)).

23 / 47



The classical Kepler problem
The curved Kepler problem

The Kepler problem on the Heisenberg group

The Heisenberg group
The Kepler-Heisenberg problem
Results
Kepler’s laws

The Heisenberg group!

Q: Do all sub-Riemannian manifolds admit dilations?
A: No, but all Carnot groups do.

The Heisenberg group is the simplest.

Definition

The Heisenberg group is the Lie group H homeomorphic to R3,
with group law

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + 1
2(x1y2− x2y1)).

23 / 47



The classical Kepler problem
The curved Kepler problem

The Kepler problem on the Heisenberg group

The Heisenberg group
The Kepler-Heisenberg problem
Results
Kepler’s laws

The Heisenberg group!

Q: Do all sub-Riemannian manifolds admit dilations?
A: No, but all Carnot groups do.
The Heisenberg group is the simplest.

Definition

The Heisenberg group is the Lie group H homeomorphic to R3,
with group law

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + 1
2(x1y2− x2y1)).

23 / 47



The classical Kepler problem
The curved Kepler problem

The Kepler problem on the Heisenberg group

The Heisenberg group
The Kepler-Heisenberg problem
Results
Kepler’s laws

The Heisenberg group!

Q: Do all sub-Riemannian manifolds admit dilations?
A: No, but all Carnot groups do.
The Heisenberg group is the simplest.

Definition

The Heisenberg group is the Lie group H homeomorphic to R3,
with group law

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + 1
2(x1y2− x2y1)).

23 / 47



The classical Kepler problem
The curved Kepler problem

The Kepler problem on the Heisenberg group

The Heisenberg group
The Kepler-Heisenberg problem
Results
Kepler’s laws

The distribution

Three vector fields give a basis for each tangent space:

X =
∂

∂x
− 1

2
y
∂

∂z
, Y =

∂

∂y
+

1

2
x
∂

∂z
, Z =

∂

∂z

Now equip H with the plane field distribution

D = span{X ,Y }
Require all curves tangent to D (ie, horizontal)
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The metric

Now equip D with inner product 〈·, ·〉 = dx2 + dy2|D

Equivalently, can declare X and Y orthonormal

Can now measure lengths of horizontal curves γ(t) in the
usual way

l(γ) =

∫ b

a

√
〈γ̇, γ̇〉dt

Induces a distance function (metric) in the usual way

d(p, q) = inf l(γ),

where the infimum is taken over all horizontal curves
connecting p to q.
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Heisenberg geometry

Theorem

Heisenberg geodesics are helices.

Sketch of Proof:

Horizontal condition

Stokes’ Theorem

l(γ) = l(projγ)

⇒ Want to minimize planar length enclosing fixed area
⇒ Solutions are known to be circles
⇒ So geodesics project to circles in the plane
⇒ z-coordinate = area traced out by projection
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Heisenberg geometry

Figure: Left: The z-coordinate must grow like the area traced out.
Right: The Heisenberg unit sphere.
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The Kepler Problem on R3

Recall the classical Kepler Problem: integrate the flow of

H = 1
2(p2

x + p2
y + p2

z )− c

r

Kinetic energy K = 1
2(p2

x + p2
y + p2

z ) generates R3 geodesics
(lines)

Potential U = − c
r with c = 1

4π is the fundamental solution to
the R3 Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
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Heisenberg Kinetic Energy

Now on the Heisenberg group H, the dual momenta to X ,Y are

PX = px − 1
2ypz , PY = py + 1

2xpz .

Let
K = 1

2(P2
X + P2

Y )

be kinetic energy.
Induces geodesic flow,
or motion of a free particle.
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Heisenberg Potential Energy

The second order differential operator

∆ = X 2 + Y 2

is called the Heisenberg sub-Laplacian.

Theorem (Folland, 1973)

The function

U = − 2
π

(
(x2 + y2)2 + 1

16z2
)−1/2

is the fundamental solution to the Heisenberg sub-Laplacian

This will be our potential energy!
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The Kepler Problem on H

Problem

Integrate the flow of the Hamiltonian

H = K + U

= 1
2(P2

X + P2
Y )− 2

π

(
(x2 + y2)2 + 1

16z2
)−1/2

Kinetic energy K generates geodesic flow

Potential energy U is fundamental solution to sub-Laplacian
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Hamilton’s equations

Equations of motion

ẋ = PX

ẏ = PY

ż =
1

2
xPY −

1

2
yPX

ṗx = −1

2
PY pz −

4

π
x(x2 + y2)

(
(x2 + y2)2 + 1

16z2
)−3/2

ṗy =
1

2
PXpz −

4

π
y(x2 + y2)

(
(x2 + y2)2 + 1

16z2
)−3/2

ṗz = − 1

8π
z
(

(x2 + y2)2 + 1
16z2

)−3/2
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First Results

System is integrable when H = 0

Orbit periodic ⇒ H = 0

H < 0⇒ orbit is bounded

On the invariant submanifold {z = pz = pθ = 0} we can
explicitly solve for the radial motion:

r(t) =


ellipse if H < 0

parabola if H = 0

hyperbola if H > 0

Conic sections, just like Kepler in R3,S3, and H3!
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Big Result

Theorem

Periodic orbits exist!
For any odd integer k ≥ 3, there exists a periodic orbit with k-fold
rotational symmetry about the z-axis.

Idea of Proof:
Use the ‘direct method’ in the calculus of variations: start with a
space of nice periodic curves and show one of them must solve our
equations. (Prove that the action functional has a minimum in
there somewhere.)

Proof gives existence only, but can use numerics to find.
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A periodic orbit; k = 3
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A periodic orbit; k = 3

Figure: Left: Projection to xy -plane. Right: z-coordinate over time;
grows like area traced out by projection
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Periodic orbits, k = 5 and 7
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Other numerical solutions

We can numerically approximate some other orbits...
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Other numerical solutions

...which clearly reflect the helical geometry.
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Kepler-Heisenberg Laws

The analogue of the First Law fails. Periodic orbits with
rotational symmetry exist, but they are not ellipses.
However, they are very pretty:

The Second Law does hold; it is equivalent to the
conservation of angular momentum, and the system is
rotationally symmetric (Noether’s theorem)
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Kepler-Heisenberg Laws

The Third Law holds! We have

T 2 = ka4

The exponent on a increased since the Heisenberg dilation is
degree two in the z-coordinate: (x , y , z) 7→ (λx , λy , λ2z)
This is related to the fact that the z-coordinate of a curve
must grow like the planar area traced out
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Summary

Table: The Kepler Problem in different geometries

Geometry ∃ periodic orbits 1st law 2nd law 3rd law

R3 X X X X
S3 X X X ×
H3 X X X ×
H X × X X
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Open Questions

Is the system integrable for H 6= 0?

Know H > 0 solutions are unbounded in phase space. Are
they always asymptotic to Heisenberg geodesics?

Know H < 0 solutions are bounded and not periodic. Do they
always end in collision?

What other periodic orbits are out there?

What happens in higher (odd) dimensional Heisenberg
groups?
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Conclusions

• We don’t know the large scale geometry of the universe.
• Just as the 2-dimensional surface
of the earth looks flat at a human
scale, the 3-dimensional space around
us appears flat (like Euclidean R3).
• Unlike the earth, which we can now
photograph from space, we cannot step
outside the universe and look down from
above to observe its global geometry.
• However, just as ancient scientists
deduced the shape of the earth from
local observations, we could conceivably determine the shape of
the universe from small scale data.
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Conclusions

In particular, the geometry of space determines possible planetary
(and stellar) orbits.

So if we some day find a star orbiting a black hole along this path,

we may find ourselves living in a Heisenbergly-curved universe.
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Thank you for listening!
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