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Leonhard Euler (1707-1783)

Swiss

Had 13 kids

Worked in St. Petersburg and Berlin

By 1735, blind in right eye – went totally blind later, but kept
writing (secretary)

Published 530 books and papers in his life, and many more after his
death (including the ones we will consider)

Very prolific and successful, but also not always rigorous

Graphic from http://sebastianiaguirre.wordpress.com/2011/04/12/project-euler/
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Some of Euler’s Mathematics

1 Using certain notations: f (x), e,
∑
, i

2 Using a, b, c for the sides of a right triangle

3 e ix = cos x + i sin x [e iπ + 1 = 0]

4 V − E + F = 2, Ex: cube (8 vertices, 12 edges, 6 faces)
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More of Euler’s Mathematics

1
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2 Euler line (geometry)

3 Euler’s method (ordinary differential equations)

4 Eulerian path (graph theory)
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A Problem

Find two positive integers satisfying the following properties.
Their sum is a square of an integer.
The sum of their squares is the fourth power of an integer.

“On finding three or more numbers, the sum of which is a square
and the sum of the squares of which is a fourth power” (1824).

Objective: understand Euler’s solution and follow his algebraic twists
and turns along the way.

6/1/14, 7:50 PMMémoires de l'Académie impériale des sciences de St. Pétersbourg. - Page 3

Page 1 of 1about:blank

Graphic from http://eulerarchive.maa.org/
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Where did this problem come from?

Diophantus (c.200 - c.284) of Alexandria and “Diophantine”

Find a right triangle whose legs add up to a perfect square and
whose hypotenuse is also a perfect square. That is, if the legs are x
and y , and the hypotenuse is z = N2, then

x + y = M2 and x2 + y2 = z2 = N4.

Also solved by Pierre de Fermat (1601-1665) and Joseph-Louis
Lagrange (1736-1813), before Euler.

Which is bigger, M or N? Why?

My translations are NOT literal, but get the point across.
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Patterns and facts

(s + t)2 = s2 + 2st + t2

(s + t + u)2 = s2 + t2 + u2 + 2st + 2su + 2tu

In the quadratic ax2 + bx + c = 0, the sum of the two roots is −b

a
.
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Pythagorean Triples (a, b, c)

Euclid (c.300 BCE): a = p2 − q2; b = 2pq; c = p2 + q2.

a2 + b2 = (p2 − q2)2 + (2pq)2

= p4 − 2p2q2 + q4 + 4p2q2

= p4 + 2p2q2 + q4

= (p2 + q2)2 = c2. 2

Euclid showed that EVERY primitive Pythagorean triple can be put
into this form, for some choice of p and q.
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Euler’s solution to Diophantus’ problem: §5

Find x , y so that x + y = M2 and x2 + y2 = N4.

“Let us begin with the second condition. First, the formula xx + yy
shall be made a square, by placing x = aa− bb and y = 2ab, for
then xx + yy = (aa + bb)2. [**]

In addition, a2 + b2 should be a square, which happens in the same
way by setting a = p2 − q2 and b = 2pq: from here, it follows that
x2 + y2 = (a2 + b2)2 = (p2 + q2)4, and thus the latter condition has
now been fully satisfied. [**]

Then, it remains to satisfy the first condition, namely that x + y be
a square.”
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Euler’s solution: §6

“From these facts it is found that

x = a2 − b2 = p4 − 6p2q2 + q4 and y = 2ab = 4p3q − 4pq3;

and so the following formula [x + y ] ought to be a square

p4 + 4p3q − 6p2q2 − 4pq3 + q4, . . .

[with p > q > 0 and a > b].”

Why do we have to pick p > q? Why do we have to have a > b?
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Euler’s solution: §7

“The formula is solved by setting
√
x + y = p2 − 2pq + q2, from

which p
q = 3

2 , or p = 3 and q = 2.”

Wait a minute. What is Euler doing? How did he get that?

His answer is close to correct, but let’s see how close. Let’s square it.

(p2 − 2pq + q2)2 = p4 − 4p3q + 6p2q2 − 4pq3 + q4,

which doesn’t quite equal p4 + 4p3q − 6p2q2 − 4pq3 + q4, as he
claimed.
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Euler’s solution: §7 (cont.)

But he is close. Three of the terms are identical, and the other two just
have different signs. So, let’s set the two expressions equal and see what
happens.

p4 − 4p3q + 6p2q2 − 4pq3 + q4 = p4 + 4p3q − 6p2q2 − 4pq3 + q4

12p2q2 = 8p3q

3q = 2p, or
p

q
=

3

2
.

Euler doesn’t need the formula to be a square ALWAYS (like an identity).
He ONLY needs to find values of p and q that make the formula equal to
a square.

“The formula is solved by setting
√
x + y = p2 − 2pq + q2, from

which p
q = 3

2 , or p = 3 and q = 2. [**]

But then a = 5, and b = 12, and so x < 0, and this solution is
rejected.” [x = −119; y = 120]
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More of Euler’s Algebra Skills

“On account of this, a new method must be established . . . and so we
keep q = 2 but at the same time we put p = 3 + v , from which we
deduce the following values:

p4 = 81 + 108v + 54v2 + 12v3 + v4,

4p3q = 216 + 216v + 72v2 + 8v3,

6p2q2 = 216 + 144v + 24v2,

4pq3 = 96 + 32v ,

q4 = 16.

When the terms are collected, the . . . formula adopts this form:”

x + y = 1 + 148v + 102v2 + 20v3 + v4

Euler then guesses the square root of this to be: 1 + 74v − v2. Why?
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More of Euler’s Algebra Skills (cont.)

Answer: it’s the same idea as before.

(1 + 74v − v2)2 = 1 + 148v + 5474v2 − 148v3 + v4,

which is not quite 1 + 148v + 102v2 + 20v3 + v4, but three of the terms
are identical. So, when setting them equal, several terms cancel, leaving:

102v2 + 20v3 = 5474v2 − 148v3

168v3 = 5372v2

v =
5372

168
=

1343

42
.

So p = 3 + v = 1469
42 and q = 2. But Euler knew that he could multiply p

and q by any constant and still have a perfect square. So he gets

p = 1469 and q = 84.
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The Answer to Diophantus’ Problem

Working backwards, Euler now gets

a = p2 − q2 = 14692 − 842 = 2,150,905

b = 2pq = 2(1469)(84) = 246,792

x = a2 − b2 = 4,565,486,027,761 and

y = 2ab = 1,061,652,293,520,

“. . . which are the same that Fermat, and others after him, found. The
sum of them is the square of the number 2,372,159, while the sum of the
squares is the fourth power of the number 2,165,017.”

WOW!!! But wait, there’s more . . . .
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Finding a Pattern, I

Next, Euler finds three numbers (x , y , z).

1 Set x = a2 + b2 − c2, y = 2ac , z = 2bc.

2 Then set a = p2 + q2 − r2, b = 2pr , c = 2qr .

3 Then GUESS the square root of x + y + z .

4 . . . Euler finds p = r + 3
2q.

5 He then chooses q = 2, r = 1 to get p = 4 and thus . . .

6 “x = 409; y = 152; z = 64, the sum of which is
x + y + z = 625 = 252; while the sum of the squares will be
xx + yy + zz = 194,481 = 4412 = 214.” (MUCH SMALLER)
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Finding a Pattern, II

Next, Euler finds four numbers (x , y , z , v).

1 Set x = a2 + b2 + c2 − d2, y = 2ad , z = 2bd , v = 2cd .

2 Then set a = p2 + q2 + r2 − s2, b = 2ps, c = 2qs, d = 2rs.

3 Then GUESS the square root of x + y + z + v .

4 . . . Euler finds p = s + 3
2 r − q.

5 He then chooses r = 2, q = s = 1 to get p = 3 and thus . . .

6 “x = 193; y = 104; z = 48; v = 16, the sum of which is
x + y + z + v = 361 = 192; while the sum of the squares will be
xx + yy + zz + vv = (pp + qq + rr + ss)4 = 154.”
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Finding a Pattern, III

Next, Euler finds five numbers (x , y , z , v ,w).

1 Set x = a2 + b2 + c2 + d2 − e2, y = 2ae, z = 2be, v = 2ce,
w = 2de.

2 Then set a = p2 + q2 + r2 + s2 − t2, b = 2pt, c = 2qt, d = 2rt,
e = 2st.

3 Then GUESS the square root of x + y + z + v + w .

4 . . . Euler finds p = t + 3
2 s − r − q.

5 He then chooses s = 2, t = r = q = 1 to get p = 2 and thus . . .

6 “x = 89; y = 72; z = 32; v = 16; w = 16, the sum of which is
x + y + z + v + w = 225 = 152; while the sum of the squares will be
x2 + y2 + z2 + v2 + w2 = 114.”
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The Pattern

For 3 numbers, p = r + 3
2q.

For 4 numbers, p = s + 3
2 r − q.

For 5 numbers, p = t + 3
2 s − r − q.

You try it!!

For 6 numbers, p = u + 3
2 t − s − r − q.
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Student Work

I teach Topics in the History of Mathematics. I assign a project in
which students have to engage with a primary source or a
translation of a primary source.

One student chose this paper.

She found six numbers that had the same property. Namely: 97,
112, 64, 64, 64, and 128.

Their sum is 529 = 232, and the sum of their squares is
50625 = 154.
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Another solution

“On a notable advancement in Diophantine analysis” (1830) has a
different solution. Why?

. . . because Lagrange criticized Euler’s original solution method. So Euler
wrote two more papers going into more generality about how to generate
solutions.
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E772

Euler generalizes to find integer solutions to

a2x4 + 2abx3y + cx2y2 + 2bdxy3 + d2y4 = 2

by making substitutions and taking advantage of certain patterns. We’ll
work through an example.

But first, we’ll set y = 1 and look for rational solutions. Why is this OK?
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A Related Example: 1 + 12x + 6x2 + 12x3 + x4 = 2

This is rewritten as: (1 + 6x + x2)2 − 32x2 = 2. If we let

1 + 6x + x2 = p2 + 8q2 and x = pq,

then
(1 + 6x + x2)2 − 32x2 = (p2 − 8q2)2.

So now we have to find solutions to:

1 + 6pq + p2q2 = p2 + 8q2,

which is quadratic in p or in q.
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Quadratics

As a quadratic in p, the equation is

(q2 − 1)p2 + (6q)p + (1− 8q2) = 0.

So the sum of the roots is

p + p′ =
−6q

q2 − 1
.

As a quadratic in q, the sum of the roots is

q + q′ =
−6p

p2 − 8
.

Note that if q = 0, then p = 1. Also, if q = 1, then p =
7

6
.
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An infinite chain of solutions

p + p′ =
−6q

q2 − 1
; q + q′ =

−6p

p2 − 8

If q = 0, then p = 1.

Then q′ =
−6

1− 8
− 0 =

6

7
. Then

p′ =
−36

7
36
49 − 1

− 1 =
239

13
. . . .

Also, if q = 1, then p =
7

6
. Then q′ =

−7
49
36 − 8

− 1 =
13

239
. . . .

So x = 0;
6

7
;

1434

91
; . . . ; or x =

7

6
;

91

1434
; . . . .

CMC3 Tahoe 2015 Euler 25/ 28



An infinite chain of solutions

p + p′ =
−6q

q2 − 1
; q + q′ =

−6p

p2 − 8

If q = 0, then p = 1. Then q′ =
−6

1− 8
− 0 =

6

7
.

Then

p′ =
−36

7
36
49 − 1

− 1 =
239

13
. . . .

Also, if q = 1, then p =
7

6
. Then q′ =

−7
49
36 − 8

− 1 =
13

239
. . . .

So x = 0;
6

7
;

1434

91
; . . . ; or x =

7

6
;

91

1434
; . . . .

CMC3 Tahoe 2015 Euler 25/ 28



An infinite chain of solutions

p + p′ =
−6q

q2 − 1
; q + q′ =

−6p

p2 − 8

If q = 0, then p = 1. Then q′ =
−6

1− 8
− 0 =

6

7
. Then

p′ =
−36

7
36
49 − 1

− 1 =
239

13
. . . .

Also, if q = 1, then p =
7

6
. Then q′ =

−7
49
36 − 8

− 1 =
13

239
. . . .

So x = 0;
6

7
;

1434

91
; . . . ; or x =

7

6
;

91

1434
; . . . .

CMC3 Tahoe 2015 Euler 25/ 28



An infinite chain of solutions

p + p′ =
−6q

q2 − 1
; q + q′ =

−6p

p2 − 8

If q = 0, then p = 1. Then q′ =
−6

1− 8
− 0 =

6

7
. Then

p′ =
−36

7
36
49 − 1

− 1 =
239

13
. . . .

Also, if q = 1, then p =
7

6
. Then q′ =

−7
49
36 − 8

− 1 =
13

239
. . . .

So x = 0;
6

7
;

1434

91
; . . . ; or x =

7

6
;

91

1434
; . . . .

CMC3 Tahoe 2015 Euler 25/ 28



An infinite chain of solutions

p + p′ =
−6q

q2 − 1
; q + q′ =

−6p

p2 − 8

If q = 0, then p = 1. Then q′ =
−6

1− 8
− 0 =

6

7
. Then

p′ =
−36

7
36
49 − 1

− 1 =
239

13
. . . .

Also, if q = 1, then p =
7

6
. Then q′ =

−7
49
36 − 8

− 1 =
13

239
. . . .

So x = 0;
6

7
;

1434

91
; . . . ; or x =

7

6
;

91

1434
; . . . .

CMC3 Tahoe 2015 Euler 25/ 28



Check

Recall: 1 + 12x + 6x2 + 12x3 + x4 = 2.
Why is the reciprocal of a solution another solution?

If x = 0, then 2 = 12.

If x =
6

7
, then 2 =

(
239

49

)2

.

If x =
7

6
, then 2 =

(
239

36

)2

.

If x =
1434

91
, then 2 =

(
2750257

8281

)2

.

If x =
91

1434
, then 2 =

(
250273387

2056356

)2

.
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Complete?

But will this process lead to ALL the solutions to

a2x4 + 2abx3 + cx2 + 2bdx + d2 = 2?

Euler goes on to exploit algebraic transformations of the original equation
that allow him to find an analog of reciprocal solutions. (I.e., if the
coefficients aren’t symmetric, then what can be said?)
“. . . and in this way hardly any doubt can survive, but that all the
satisfactory values for x will clearly be rooted out.”

But is this REALLY all the solutions?
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Thank you!

Chris Goff
University of the Pacific

cgoff@pacific.edu
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