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Overview
1. History of Computer Science at COD.

2. Stroustrup's Philosophy

3. Computer Science and its Relation to Mathematics
(why it's important to love the monster)

I Is Computer Science Part of Mathematics?

4. Stroustrup's Book

5. Using Programming Projects to Learn Math.

I Shorter coding assignments that reinforce math students are
learning.

I Larger coding projects that develop new ideas.
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Brief History of CS at COD

• Hired as a math teacher, I started teaching Physics 5 (Scienti�c Computing)
in 1997.

• With physics teacher, Doug Macintire, received CS equivalence and created
new Computer Science program in 2012.

�quali�cations that are at least equivalent to the min. quals speci�ed�

•

•

• http://geofhagopian.net/

http://geofhagopian.net/
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Stroustrup's Philosophy
(A summary of S's article, Programming in an undergraduate CS curriculum)

• Programming is a means of making ideas into reality using computers.

• What universities produce 6= what industry needs.

• CS must emphasize software development (even at the expense of algorithmic
complexity, data structures and...subsurface luminosity).

• Fashions come and go so rapidly that only a solid grasp of the fundamentals of CS
and software development has lasting value. Industry wants software �developers�
more than computer scientists and engineers.

• Preferably, an understanding of programming extends to several kinds of languages
(declarative, scripting, machine level) and applications (embedded systems, text
manipulation, small commercial application, scienti�c computation); language
bigots do not make good professionals.

http://www.stroustrup.com/software.pdf
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Avoid Unprincipled Hacking!

For many, �programming� has become a strange

combination of unprincipled hacking and invoking other

people's libraries (with only the vaguest idea of what's

going on). The notions of �maintenance� and �code

quality� are at best purely academic. Consequently, many

in industry despair over the di�culty of �nding graduates

who understand �systems� and �can architect software.�



kluge � The OED De�nition



Stroustrup's Three Modes of Exposition:

I Philisophy, �Blue: concepts and techniques� We characterize our approach as

�depth-�rst.� It is also �concrete-�rst� and �concept-based.� First, we quickly (well, relatively quickly,

Chapters 1�11) assemble a set of skills needed for writing small practical programs. In doing so, we

present a lot of tools and techniques in minimal detail. We focus on simple concrete code examples

because people grasp the concrete faster than the abstract. That's simply the way most humans learn. At

this initial stage, you should not expect to understand every little detail. In particular, you'll �nd that

trying something slightly di�erent from what just worked can have �mysterious� e�ects. Do try, though!

And please do the drills and exercises we provide. Just remember that early on you just don't have the

concepts and skills to accurately estimate what's simple and what's complicated; expect surprises and learn

from them.

I Practical perspective, �Green: advice� At the end of this book, will you be

an expert at programming and at C++? Of course not! When done well, programming is a subtle, deep,

and highly skilled art building on a variety of technical skills. You should no more expect to be an expert

at programming in four months than you should expect to be an expert in biology, in math, in a natural

language (such as Chinese, English, or Danish), or at playing the violin in four months � or in half a year,

or a year. What you should hope for, and what you can expect if you approach this book seriously, is to

have a really good start that allows you to write relatively simple useful programs, to be able to read more

complex programs, and to have a good conceptual and practical background for further work.

I Cautionary tales, � Red: warning " [N]ever skip the drills, no matter how

tempted you are; they are essential to the learning process. Just start with the �rst step and proceed,

testing each step as you go to make sure you are doing it right.
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do { yourHomework();

I
//Dr. Doug Macintire delivers the admonishment

I } while(!orElse);
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Computer Science vis-à-vis Mathematics

I What would The Donald say?

I
Donald Knuth, the �father of the analysis of algorithms�, is a computer scientist, mathematician, and

professor emeritus at Stanford University who wrote the multi-volume work The Art of Computer Programming.

The following quotes are from

I Computer Science and Mathematics Newsletter
ACM SIGCSE Bulletin Homepage archive Volume 2 Issue 4,
September-October 1970 Pages 19-29 ACM New York, NY, USA

https://www.youtube.com/watch?v=48iJx8FVuis
http://tinyurl.com/h3wkkva
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De�nition of Computer Science

I �My favorite way to describe computer science is to say that it is the
study of algorithms*."� cf Stroustrup's �making ideas into reality�

I *Algorithm: �a precisely-de�ned sequence of rules to produce speci�ed output

from given input in �nite steps� or �1. a precise rule (or set of rules) specifying

how to solve some problem.�

I �A particular representation of an algorithm is called a program.�

I Algorithms �are extraordinarily rich in interesting properties; and furthermore, an
algorithmic point of view is a useful way to organize knowledge in general.�

I Forsythe: �the question 'What can be automated?' is one of the
most inspiring philosophical and practical questions of contemporary
civilization�

I �Computers are really necessary before we can learn much about the
general properties of algorithms; human beings are not precise
enough nor fast enough to carry out any but the simplest
procedures.�

https://en.wikipedia.org/wiki/George_Forsythe
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Is Computer Science Part of Mathematics?
I �[..] algorithms were studied primarily by mathematicians, if by anyone, before

the days of computer science. Therefore one could argue that this central aspect
of computer science is really part of mathematics.�

I �Like mathematics, computer science will be somewhat di�erent from the other

sciences, in that it deals with man-made laws which can be proved, instead of

natural laws which are never known with certainty [..]� mathematics dealing

more or less with theorems, in�nite processes, static relationships, and computer

science dealing more or less with algorithms, �nitary constructions, dynamic

relationships.�
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Knuth on Educational Side-E�ects of Studying CS

I �It has often been said that a person does not really understand something until she

teaches it to someone else. Actually a person does not really understand something

until she can teach it to a computer, i.e., express it as an algorithm. �The automatic

computer really forces that precision of thinking which is alleged to be a product of any

study of mathematics. The attempt to formalize things as algorithms leads to a much

deeper understanding than if we simply try to comprehend things in the traditional way.�

I �..the pedagogic value of an algorithmic approach [.] aids in the understanding of

concepts of all kinds. A student who is properly trained in computer science is learning

something which will implicitly help her cope with many other subjects; and therefore

there will soon be good reason for saying that undergraduate computer science majors

have received a good general education, just as we now believe this of undergraduate

math majors. On the other hand, the present-day undergraduate courses in computer

science are not yet ful�lling this goal; at least, I �nd that many beginning graduate

students with an undergraduate degree in computer science have been more narrowly

educated than I would like."
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Strstr's Problem Solving Principles/Practices

I As you work on a problem you repeatedly go through these stages:

1. Analysis: Figure out what should be done and write a
description of your (current) understanding of that. Draw
diagrams, solve simpler problems, develop invariants and write
pseudocode and create structures needed to solve the problem.

2. Design: Create an overall structure for the system, deciding
which parts the implementation should have and how those
parts should communicate. As part of the design consider
which tools � such as libraries � can help you structure the
program.

3. Implementation: Write the code, debug it, and test that it
actually does what it is supposed to do.

I Compare with Polya's problem solving method:

1. Understand the problem.

2. Make a plan.
3. Carry out the plan.
4. L∞k back.
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The Collatz (3x + 1) Problem at Nexus of Math & CS

I Richard Guy: �The 3x + 1 sequences take a positive integer and
iteratively apply the following rule: If a number is odd, triple it and
add one; if even, halve it. The sequences produced by this rule
always appear to reach an in�nite string of 4, 2, 1, 4, 2, 1, etc., and
the problem is whether all sequences reach this cycle; that is,
whether for all t0, there is some n where tn = 1. Here are some
examples:

I 6, 3, 10, 5, 16, 8, 4, 2, 1, 4, . . .

I 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, . . .

I 30, 15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, . . .

I For c0 ∈ N, iterate

cn+1 =


cn
2

if cn is even

3 · cn + 1

2
if cn is odd

I Erd®s: �Mathematics is not yet ripe for such problems.�
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The Collatz Problem is an Unproven Conjecture!
I Guy again: �Despite the simple rule, the

paths of the sequences are rather
unpredictable. Starting with 33 takes 26
steps and climbs to 100 before reaching 1,
while 27 takes 111 steps and climbs to
over 9000 before reaching 1. Such
behavior has made this and other similar
problems seem intractable; we cannot
even show that such sequences could not
go to in�nity! As Lagarias introduces the
problem in his 3x + 1 compendium, he
states that it touches number theory,
ergodic theory, stochastic processes, and
more, while not lying squarely in any of
their domains.�

I Note that the Collatz Conjecture is
equivalent to the claim that, working
backwards from 1, we get a binary tree
spanning all of N.

 http://dx.doi.org/10.2307/2975688 
http://dx.doi.org/10.1007/3-540-44612-5_63
https://xkcd.com/710/
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I The Collatz Conjecture

1 /// Collatz Conjecture generalization

#include <iostream >

3 using namespace std;

5 long countIterations(long c) {

long count =0;

7 while (c!=1) {

c = (c%2==0)? c/2 : (3*c+1)/2; // ternary op

9 ++count;

}

11 return count; //the number of iteration to 1

}

13

int main() {

15 long maxIters {0}, maxIterSeed {0}, count {0}, sumIters {0};

for(long c=2; c <=1000; c++) {

17 count = countIterations(c);

sumIters += count;

19 if(maxIters <count) {

maxIters = count;

21 maxIterSeed = c;

}

23 }

cout << endl << maxIterSeed << " produced a maximum of "

25 << maxIters << " iterations.";

cout << "\nThe average number of iterations is " << sumIters /1000;

27 }



Generalizing Collatz to Guy
I Guy sequences are a variation on Collatz

sequences, as described in the chapter, Historic
Conjectures: More Sequence Mysteries in the
book, Tracking the Automatic Ant, and Other

Mathematical Explorations, by David Gale. A Guy
sequence here is de�ned as a sequence which uses
the iterative function:

Gn+1 =


3 · Gn

2
if Gn mod 2 == 0

3 · Gn + 1

4
if Gn mod 4 == 1

3 · Gn − 1

4
if Gn mod 4 == 3

I This leads to a very di�erent dynamic. Using the
following code we �nd sequences

I 2, 3, 2, 3, 2, 3, 2, 3, . . .

I 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, · · ·

I 44, 66, 99, 74, 111, 83, 62, 93, 70, 105, 79, 59, 44, · · ·

Questions:
1. What happens
when the �rst value
is 8? 2. What other
�rst values lead to
the same fate? 3. We
have found at least
three cycles, are there
more? How many?

http://tinyurl.com/gpz3x25
http://tinyurl.com/pyoqtbh
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I Guy Sequence Code

// The iterative function

2 long long nextGuy(long long G_n) {

if(G_n %2==0) return 3*G_n/2;

4 if(G_n %4==1) return (3* G_n +1) /4;

else return (3*G_n -1)/4;

6 }

// generate the sequence

8 void gen(vector <long long >& seq , long long x) {

seq.push_back(x);

10 long long next = nextGuy(x);

while(find(seq.begin(), seq.end(), next) == seq.end()) {

12 seq.push_back(next);

next = nextGuy(next);

14 }

}

16 void print(vector <long long > v) {

for(const long long &i : v) // access by const reference

18 std::cout << i << ' ';

}

20 int main() {

long long start {0}; // long long is a 64-bit int

22 vector <long long > seq;

cout << "\nEnter a starting value: ";

24 while(cin >> start) {

seq.clear ();

26 gen(seq , start);

print(seq);

28 cout << "\nEnter a starting value: ";

}

30 }



Building a Mean Value Theorem Function - Part I

I A good project for students who are currently enrolled in precalculus or
above is to experiment with the Mean Value Theorem components.

I The �rst assignment could be as follows. Write a program that will
prompt the user to enter the degree of a polynomial

p(x) = anx
n + an−1x

n−1 + · · · a0

and then the polynomial's coe�cients. Divide the task into two functions:
getPoly() which prompts the user for polynomial's degree and
coe�cients and returns the coe�cients as a vector<double>. Then write
a function poly(vector<double> coeff, double x which takes the
coeff vector, an input x and returns the value of the polynomial at x.

I Test that the functions work with a main() function like so:

int main() {

2 double x;

vector <double > coeff = getPoly ();

4 cout << "\nInput x = ";

while(cin >> x) {

6 cout << "\np(" << x << ") = " << poly(coeff ,x);

cout << "\nx = ";

8 }

}



Building a Mean Value Theorem Function - Part I

I A good project for students who are currently enrolled in precalculus or
above is to experiment with the Mean Value Theorem components.

I The �rst assignment could be as follows. Write a program that will
prompt the user to enter the degree of a polynomial

p(x) = anx
n + an−1x

n−1 + · · · a0

and then the polynomial's coe�cients. Divide the task into two functions:
getPoly() which prompts the user for polynomial's degree and
coe�cients and returns the coe�cients as a vector<double>. Then write
a function poly(vector<double> coeff, double x which takes the
coeff vector, an input x and returns the value of the polynomial at x.

I Test that the functions work with a main() function like so:

1 int main() {

double x;

3 vector <double > coeff = getPoly ();

cout << "\nInput x = ";

5 while(cin >> x) {

cout << "\np(" << x << ") = " << poly(coeff ,x);

7 cout << "\nx = ";

}

9 }



Building a Mean Value Theorem Function - Part I

I A good project for students who are currently enrolled in precalculus or
above is to experiment with the Mean Value Theorem components.

I The �rst assignment could be as follows. Write a program that will
prompt the user to enter the degree of a polynomial

p(x) = anx
n + an−1x

n−1 + · · · a0

and then the polynomial's coe�cients. Divide the task into two functions:
getPoly() which prompts the user for polynomial's degree and
coe�cients and returns the coe�cients as a vector<double>. Then write
a function poly(vector<double> coeff, double x which takes the
coeff vector, an input x and returns the value of the polynomial at x.

I Test that the functions work with a main() function like so:

1 int main() {

double x;

3 vector <double > coeff = getPoly ();

cout << "\nInput x = ";

5 while(cin >> x) {

cout << "\np(" << x << ") = " << poly(coeff ,x);

7 cout << "\nx = ";

}

9 }



Building a Mean Value Theorem Function - Part II
I The solution might look like this:

1 vector <double > getPoly () {

double deg {0};

3 cout << "\nWhat is the degree of your polynomial? ";

do {

5 cin >> deg;

} while(deg <= 0 || int(deg) != deg);

7 vector <double > coeff(int(deg)+1);

cout << "\nEnter the coefficients in ascending order: ";

9 for(int i = 0; i < deg +1; ++i) {

cout << "\nThe coefficient of x^" << i << " = ";

11 cin >> coeff[i];

}

13 return coeff;

}

15 // evaluate poly in Horner 's form:

double poly(vector <double > coeff , double x) {

17 double value = coeff[coeff.size() -1];

for(int i = coeff.size() -1; i > 0; --i) {

19 value *= x;

value += coeff[i-1];

21 }

return value;

23 } /* typical output

What is the degree of your polynomial? 2

25 Enter the coefficients in ascending order:

The coefficient of x^0 = 3

27 The coefficient of x^1 = 2

The coefficient of x^2 = 1

29 Input x = 1

p(1) = 6

31 x = 2

p(2) = 11 */



Building a Mean Value Theorem Function - Part III

I Next, you may want a function which gives the slope of the secant line
between two points, and another function which approximates the slope
of the tangent line.

I Write a program that will prompt the user to enter two points, a and b,
and returns the slope of the secant line connecting those points for your
polynomial function.

msec =
p(b)− p(a)

b − a

secant() computes the slope of line from the point on the polynomial
where x = a to the point where x = b. poly(vector<double> coeff,

double x which takes the coeff vector, an input x and returns the
value of the polynomial at x.

I Test that the functions work with a main() function like so:

int main() {

2 double x;

vector <double > coeff = getPoly ();

4 cout << "\nInput x = ";

while(cin >> x) {

6 cout << "\np(" << x << ") = " << poly(coeff ,x);

cout << "\nx = ";

8 }

}
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Building a Mean Value Theorem Function - Part IV
I The tangent function and a �rst shot at the Mean Value Theorem point function

(mvtPoint()) are shown below. The strategy for mvtPoint() is walk through a sequence

of secant lines of points relatively close together to see where the product

(m-secant(coeff,x,x+eps))*(m-secant(coeff,x+eps,x+2*eps)) changes sign.

1 double tangent(vector <double > coeff , double x, double epsilon) {

return secant(coeff ,x-epsilon/2, x+epsilon /2);

3 }

double mvtPoint(vector <double > coeff , double m, double a, double b) {

5 double eps = (b-a)/1.e2;

for(double x = a; x < b-2*eps; x += eps) {

7 if((m-secant(coeff ,x,x+eps))*(m-secant(coeff ,x+eps ,x+2*eps)) <0) return x;

}

9 }

int main() {

11 double a, b, m, mvt , epsilon;

vector <double > coeff = getPoly ();

13 cout << "\nInput two points for the slope of the secant line:";

while(cin >> a >> b) {

15 m = secant(coeff ,a,b);

cout << "\nThe secant from (" << a << ", " << poly(coeff ,a)

17 << ") to (" << b << ", " << poly(coeff ,b) << ") = "

<< "\n(p(" << b << ") - P(" << a <<"))/(" << b << " - "

19 << a << ") = " << m;

mvt = mvtPoint(coeff ,m,a,b);

21 epsilon = (b-a)/1.e10;

cout << "\nA point guaranteed by the MVT is near where x = " << mvt

23 << "\nThe slope of the tangent line at x = " << mvt << " is "

<< tangent(coeff ,mvt ,epsilon);

25 cout << "\nInput two points for the slope of the secant line:";

}

27 }



Building a Mean Value Theorem Function - Part V
I Of course, if the student knows the power rule they could compute the derivative of the

polynomial function that way, but the approach here is more general and doesn't rely on

derivative rule shortcuts. The method demonstrated by the code here is not terrible

accurate and could be improved in many ways...it may also fail, depending on the

behavior of the polynomial, but it is a good starting point.

I Suppose the student is investigating the MVT for f (x) = x3 − x2 on the intervals

[0, 1], [0, 2], and [1, 2]. The output would then be as shown below:

I
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Stroustrup's Central Problem: A Calculator
I The �rst hint of the calculator appears in

chapter 5, exercise 4:

I The approach is �depth �rst� in the sense that it
quickly moves through a series of basic
techniques, concepts, and language supports
before broadening out for a more complete
understanding. The �rst 10 chapters (which
Stroustrup does in about 6 weeks�but I took 15)
cover objects, types and values, computation,
debugging, error handling, the development of a
�signi�cant program� (a desk calculator).

I The development of the calculator through

redesign, extension of functionality, serves as a

model of what it means to create a large,

complex program.
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Stroustrup's Central Problem: A Calculator

I 6.3.1 First attempt

�At this point, we are not really ready to write the calculator
program. We simply haven't thought hard enough, but thinking is
hard work and � like most programmers � we are anxious to write
some code. So let's take a chance, write a simple calculator, and
see where it leads us. The �rst idea is something like

I

I To do:
1. Clean up the code a bit
2. Add multiplication and division (e.g., 2*3)
3. Add the ability to handle more than one operand (e.g., 1+2+3)
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Stroustrup's Central Problem: A Calculator
I After a few false starts and after

correcting a few syntax and logic
errors, we arrive at code at right:

I This isn't bad, but then we try 1+2*3 and

see that the result is 9 and not the 7 our

arithmetic teachers told us was the right

answer. Similarly, 1�2*3 gives �3 rather than

the �5 we expected. We are doing the

operations in the wrong order: 1+2*3 is

calculated as (1+2)*3 rather than as the

conventional 1+(2*3). Similarly, 1�2*3 is

calculated as (1�2)*3 rather than as the

conventional 1�(2*3). Bummer!

I So (somehow), we have to �look ahead� on

the line to see if there is a * (or a /). If so,

we have to (somehow) adjust the evaluation

order from the simple and obvious

left-to-right order. Unfortunately, trying to

barge ahead here, we immediately hit a

couple of snags.
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Parsing Tokens
I In linguistics a token is an individual occurrence of a linguistic unit

in speech or writing, like a particular noun or verb.

I In computing a token is the smallest meaningful unit of information
in a sequence of data for a compiler, like a number or an operation.

I

http://www.oxforddictionaries.com/us/definition/american_english/token
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Try This
I

I Unsurprisingly, this �rst version of the calculator doesn't work quite as we expected. So

we shrug and ask, �Why not?� or rather, �So, why does it work the way it does?� and

�What does it do?� Type a 2 followed by a newline. No response. Try another newline

to see if it's asleep. Still no response. Type a 3 followed by a newline. It answers 2!
I
1 class Token_stream { //an

public:

3 Token_stream (); // make a Token_stream to reads from cin

Token get(); //get Token (get() is defined elsewhere)

5 void putback(Token t); // put a Token back

void ignore(char c); // discard tokens up a c

7 private:

bool full; // is there a Token in the buffer?

9 Token buffer; // we keep a Token using putback ()

};

http://www.stroustrup.com/Programming/calculator00.cpp
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Program Structure
I Sometimes, the proverb says, it's hard to see the forest for the trees. Similarly, it is easy

to lose sight of a program when looking at all its functions, classes, etc. So, let's have a

look at the program with its details omitted:

I

I
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Cellular Automata and Conway's �Life"

1. Survivals. Every counter with two or three neighboring counters
survives for the next generation.

2. Deaths. Each counter with four or more neighbors dies (is
removed) from overcrowding. Every counter with one neighbor or
none dies from isolation.

3. Births. Each empty cell adjacent to exactly three neighbors-no
more, no fewer-is a birth cell.

4.

http://geofhagopian.net/CS007A/CS7A-F15/CS7A-F15-Calendar.html
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Cellular Automata and Conway's �Life"
I The most immediate practical application of cellular automata theory, Banks believes, is

likely to be the design of circuits capable of self-repair or the wiring of any speci�ed

type of new circuit. No one can say how signi�cant the theory may eventually become

for the physical and biological sciences. It may have important bearings on cell growth

in embryos, the replication of DNA molecules, the operation of nerve nets, genetic

changes in evolving populations and so on. Analogies with life processes are impossible

to resist. If a primordial broth of amino acids is large enough, and there is su�cient

time, self-replicating, moving automata may result from complex transition rules built

into the structure of matter and the laws of nature. There is even the possibility that

space-time itself is granular, composed of discrete units, and that the universe, as

Fredkin and others have suggested, is a vast cellular automaton run by an enormous

computer. If so, what we call motion may be only simulated motion. A moving

spaceship, on the ultimate microlevel, may be essentially the same as one of Conway's

spaceships, appearing to move on the macrolevel whereas actually there is only an

alteration of states of basic space-time cells in obedience to transition rules that have

not yet been discovered.

I Wolfram's cellular automata:

http://geofhagopian.net/CS007A/CS7A-F15/CS7A-F15-Calendar.html
http://mathworld.wolfram.com/ElementaryCellularAutomaton.html
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Knight's Tours
I A knight's path is the path a knight takes in

moving around the chess board. In general, a

knight is known to move from its current position

on a chess board to a new position by either going

up or down 1 or 2 and then going left or right 2 or

1, making an �L" shape which is 1 square in one

direction and 2 squares in the other direction. So

a black knight on an a standard chess board at

column d and row 4 (as shown) can move to 8

positions (black circles), while the white knight in

the corner at h1 has only two moves (white

circles)

I Special knight's tours:

1. a knight's tour visits each square exactly once and

2. a knight's circuit visits every square exactly once and then can
return to the original square on the last move
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Knight's Tours
I The �rst project is to create an interface

to

1. Get the dimensions of the board
from the user.

2. Get the initial position of the knight.
3. Display the board as a rectangular

array showing '0' for unvisited
squares and the number of the move
on the visited squares: '1','2',...

4. Get a legal move.

5. Update the board and got to step 3.

I What is the probability that a knight making random moves will complete a
tour?

I How many di�erent tours are there?

I Modify the code to move on a toroidal chess board.
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Babylonian Basins of Attraction for zn = 1
I We have seen that the Babylonian algorithm iterates

xn+1 ←
xn + A/xn

2

for convergence to
√
A. This can be generalized to

cube roots and so on using the iterative formula

xn+1 ←
(k − 1)xn + A/xk−1

n

k

for convergence to a kth root of a complex number,
A.

I In the complex plane, the kth roots unity ( k
√
1) are

evenly distributed around the unit circle. For
example, if z is a complex number then z3 = 1 has
three di�erent solutions which can be found
algebraically by solving

z3 = 1

z3 − 1 = 0

(z − 1)(z2 + z + 1) = 0
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Mastermind

Implement a little guessing game called (for some

obscure reason) �Bulls and Cows.� The program

has a vector of four di�erent integers in the range

0 to 9 (e.g., 1234 but not 1122) and it is the

user's task to discover those numbers by repeated

guesses. Say the number to be guessed is 1234

and the user guesses 1359; the response should

be �1 bull and 1 cow� because the user got one

digit (1) right and in the right position (a bull)

and one digit (3) right but in the wrong position

(a cow). The guessing continues until the user

gets four bulls, that is, has the four digits correct

and in the correct order.



Directed Student Projects

1. Generalized Collatz Conjecture: Guy Sequences

2. Ramsey Theory with Vectors

3. Queen's Tour

4. Sam Lloyd's Fifteen Puzzle

5. Beginning AI in Solving the Fifteen Puzzle

6. Word Ladders (doublets)

7. Word Squares

8. Happy and Sad Numbers

9. Bitwise Calculator

http://geofhagopian.net/CS007A/assignments/CS7A_S12_BeyondGuy.pdf
http://geofhagopian.net/CS007A/assignments/CS7A%20Ramsey%20Theory%20Search%20with%20Vectors.pdf
http://www.geofhagopian.net/CS007A/assignments/CS7A_S12_QueensProblem.pdf
http://www.geofhagopian.net/CS007A/assignments/CS7A_S11_Fifteen.pdf
http://www.geofhagopian.net/CS007A/assignments/CS7A_S11_Fifteen-2.pdf
http://www.geofhagopian.net/CS007A/assignments/CS7A_S12_WordSquares.pdf
http://geofhagopian.net/CS007A/cs7a-f14/inclass/happyProject.pdf
http://geofhagopian.net/CS007A/assignments/Assigns_F14/cs7a-f14-PPP6-e7.pdf
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!(The End)
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