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Abstract 
 
 

I will discuss four counterintuitive situations that arise in probabilistic and 
statistical contexts. One appears in some elementary texts, but I will add a twist 
to it that leads to a rather startling result. The other cases are less well known; 
some have important real-world implications. Enliven our discussion by 
bringing your favorite paradox. 
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Attribution 
 
Ellenberg, Jordan, How Not To Be Wrong (Penguin Press, New York, 2014) 
 
Shermer, Michael, “Surviving Statistics,” Scientific American, September 2014 
 
Feller, William, An Introduction to Probability Theory and Its Applications, Vol. 2,  
      2nd edition (John Wiley & Sons, NY, 1971) 
 
Karlin, Samuel and Howard M. Taylor, A First Course in Stochastic Processes, 2nd 
edition (Academic Press, NY, 1975) 
 
Various online articles. Phrases such as “probabilistic paradoxes” and “statistical 
biases” yield a deluge of relevant results. Caveat emptor. 
 
Some of what follows is original in the following sense: 
 
“Originality is the fine art of remembering what you hear but forgetting where you heard 
it.”    (Laurence J. Peter, Canadian-American educator) 
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Topics to be covered 
 
 
• The sibling-gender problem and a generalization thereof 

 
• Berkson’s Paradox 

 
• The Inspection Paradox 

 
• Survival Bias 
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The Sibling-Gender Problem	
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Assumptions for the sibling-gender probabilistic models 
 
• The standard model 

 
  Population of interest consists of two-child families. 
 
  Sexes of the first-born and second-born are independent. 
 

At each birth, the probability of a boy equals the probability of a girl 
equals 1 2. 
 

• The additional-descriptor model 
 

With probability ! 0 < ! < 1  a boy child possesses an additional attribute. 

The nature of the attribute is not important, but a popular one is: “The boy 

was born on a Tuesday and ! = 1 7.“ I will analyze the general case in 

which the attribute remains unspecified and ! remains a variable. 
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Two similar-sounding questions (Textbook examples) 
 

Assumption: Standard sibling-gender model 
 
Queston 1: You randomly select a 2-child family and announce that one child 

is a boy. What is the probability that the other child is a boy? 
 
Answer: 1 3  
 
 
Queston 2: You randomly select a child from the population of offspring of 2-

child families; the child is a boy. What is the probability that your 
selection has a brother?  

 
Answer: 1 2  
 

The answer to Question 1 surprises many students. It surprised me on first 
exposure. 
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Outcome space for the standard sibling-gender problem

(1/2) (1/2)
BG GG

(1/4) (1/4)
BB GB

(1/4) (1/4)

B G

Standard Model

Descriptor of 
second born

G (1/2)

B (1/2)

Descriptor of first born
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A simple but informative i l lustration of the importance of knowing what population 
should be sampled to answer the question of interest. 

 
 

  
(1/2) (1/2) 

 

Descriptor of 
second born 

G 
BG GG 

(1/2) 
(1/4) (1/4) 

B 
BB GB 

(1/2) 
(1/4) (1/4) 

  

B G 

 
  

Descriptor of first born  

     

  Standard Model  

   Example 1.  Sample a family (sample a cell) and announce that one component is B.  What is the probability that the other 
component is a B? The event of interest is E where E={BB}. The conditioning event is C where C={BG, BB, GB}. 
Hence,  

 
P(E|C)=(1/4)/(3/4)=1/3. 

 
Example 2.  Sample a child [sample a row or (exclusive) a column – the researcher cannot know whether it is a row or a 
column] and announce that one component is a B. What is the probability that the other component is a B?  Again the 
event of interest is E={BB}.  If the sample came from a column, the conditioning event is C={BG, BB}. Hence, 

 
P(E|C)=(1/4)/(2/4)=1/2. 

 
 If the sample came from a row, symmetry shows that the same result obtains. 
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Sibling-gender problem with a twist 
 
First, recall the standard problem and its solution. 
 
Sample a family from the population of two-child families. 
 
Announce that one child is a boy. What is the probability that the other child is a 
boy?   Ans: 1 3  
 
Now, a common statement of the new problem: 
 
Sample a family from the population of two-child families. 
  
Announce that one child is a boy that was born on a Tuesday. What is the probability 
that the other child is a boy? Ans: 13/27 ; almost (1/2) instead of (1/3). 
 
I will pose a more general version in which the additional attribute need not be 
day-of-the-week birthday and the probability need not equal 1/7 . 
 
Let’s call it the Additional-Descriptor Model 
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Additional-Descriptor Model 
 
At each birth three possibilities exist: B!, B, G, where 
 
B! = boy who possesses additional attribute 
 
!B! = boy who does not possess additional attribute 
 
!G! = girl 
 
The corresponding probabilities are 
 

P(B!!) = (1 2)p, P(B) = (1/2)!(1− p), P(G) = (1/2),! 
 
  where 0 < p! < 1. 
 
These assignments lead to the outcome space shown on the next visual. 
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Outcome space for the Additional-Descriptor Model

(1/2)(p) (1/2)(1-p) (1/2)(1)
BTG BG GG

(1/4)p (1/4)(1-p) (1/4)
BTB BB GB

(1/4)p(1-p) (1/4)(1-p)2 (1/4)(1-p)
BTBT BBT GBT

(1/4)p2 (1/4)p(1-p) (1/4)p

BT B G

Descriptor of first born

Additional-Descriptor Model

Descriptor of 
second born

G (1/2)(1)

B (1/2)(1-p)

BT (1/2)(p)
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Calculation of probability of two boys, given that one (or 
more) possesses additional attribute T 
 
Let E represent the event of interest and C represent the conditioning event 
 
Then E = !B!B,B!B!,BB!,BB !!  and   C = {B!G,B!B,B!B!,BB!,GB!} 
 
 
The next visual shows the conditioning event in tabular form.  
 
Consult that visual, invoke the definition of conditional probability 
 
     P E! !C = P(E! ∩ !C)/P(C)! ; 
 
Do the math and find that    
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!P(E│C) !!= (2− p)/(4− p)!! ,           0 < p! < 1 
 
 
Observe that P E C  tends to (1/2) as p tends to 0 and that P E C  tends to (1/3) 
as p tends to 1. 
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Sample a family. Announce that one is a BT. What is the probability that the other is a boy? 
Shaded cells show the conditioning event.

(1/2)(p) (1/2)(1-p) (1/2)(1)
BTG BG GG

(1/4)p (1/4)(1-p) (1/4)
BTB BB GB

(1/4)p(1-p) (1/4)(1-p)2 (1/4)(1-p)
BTBT BBT GBT

(1/4)p2 (1/4)p(1-p) (1/4)p

BT B G

Descriptor of first born

Additional-Descriptor Model

Descriptor of 
second born

G (1/2)(1)

B (1/2)(1-p)

BT (1/2)(p)
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Sample a family.  Announce that one is a BT.  What is the probability that other is a boy?
Limit as p tends to 0.

The shaded cells dominate as p tends to 0, which shows that the probability of two boys tends to 
1/2.

(1/2)(p) (1/2)(1-p) (1/2)(1)
BTG BG GG

(1/4)p (1/4)(1-p) (1/4)
BTB BB GB

(1/4)p(1-p) (1/4)(1-p)2 (1/4)(1-p)
BTBT BBT GBT

(1/4)p2 (1/4)p(1-p) (1/4)p

BT B G

Descriptor of first born

Additional-Descriptor Model

Descriptor of 
second born

G (1/2)(1)

B (1/2)(1-p)

BT (1/2)(p)
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Sample a family.  Announce that one is a BT. What is the probability that other is a boy?
Limit as p tends to 1.

The shaded cells dominate as p tends to 1 which shows that the probalility of two boys tends to 
1/3.

(1/2)(p) (1/2)(1-p) (1/2)(1)
BTG BG GG

(1/4)p (1/4)(1-p) (1/4)
BTB BB GB

(1/4)p(1-p) (1/4)(1-p)2 (1/4)(1-p)
BTBT BBT GBT

(1/4)p2 (1/4)p(1-p) (1/4)p

BT B G

Descriptor of first born

Additional-Descriptor Model

Descriptor of 
second born

G (1/2)(1)

B (1/2)(1-p)

BT (1/2)(p)
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x here is our p (probability that a boy possesses an additional descriptor) 
 

            
 

     
 

Select a family; announce that one is a BT. What is 
the probability that the other child is a boy?  Y1 
answers that question. 
 
Select a family; announce that one is a B. What is 
the probability that the other child is a boy?  Y2 
answers that question. 
 
Observe that Y2 is a reflection of Y1 about x=1/2 
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Berkson’s Paradox	

18	



 

 
 
 

Berkson’s Paradox or Fallacy 
 

• Informal statement 
 
• Mathematical statement and proof 

 
• Some implications 
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Informal statement of Berkson’s Paradox 
 
Two independent events become negatively dependent given that at least one 
occurs. 
 
 
 
 
 
 
 
 
 
 
 
 
 

20	



21	
 

 
 
Mathematical statement of Berkson’s Paradox 
 
Hypotheses 
 

1. Ω, Σ,Ρ  is a probability space. 
 

      Ω = outcome set; Σ = event set; Ρ = probability function 
 

2. A ∈ Σ and Β ∈ Σ are independent events. 
 

3. ! ≡ A ∪ Β. ! is the conditioning event. 
 
4. Ρ! Ε ≡ Ρ Ε !  where Ε ∈ Σ is a generic event. 

 
Conclusion 
 
        Ρ! Α Β < Ρ! Α  and Ρ! B Α < Ρ! B . 
 

The events inhibit each other in the conditioned space but are independent 
in the parent space. 
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An implication of Berkson’s Paradox: an answer to the 
subtitle of the presentation          (3) 
 
So, what is going on? Is there a causal connection between handsomeness and 

niceness, or a hidden variable that induces a correlation? 

 

Neither: the correlation is the result of an effect: your good taste in men. Your 

high standards place only handsome or nice men into your acceptable dating 

pool. 
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Another implication of Berkson’s Paradox      (2) 
 
 
 
Observe that  
 

P B = 0.3 = P B D !and P D = 0.4 = P D B  
  

but that if C ≡ B ∪ D, then 
 

P! B D = P B D = 0.3 < 0.52 ≅ P! B  
 

and 
 

!!!!P! D B = P D B = 0.4 < 0.69 ≅ P! D  
 
 
Again, the negative correlation is the result of an effect. Both B and D put you into 
the hospital. 
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The Inspection Paradox	
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Inspection Paradox (Length-biased Sampling) 
 

Example 
Situation: 
 
You own a common-carrier trucking company. 
 
Your fleet of trucks is fairly old. Let’s say the average age is several times the 
average age of a truck battery.  
 
Today you get interested in the question: What is the average length of life of my 
truck batteries? 
 
So, you monitor the length of life of those in service today to answer your 
question.  
 
You will be happier than you should be. 
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Inspection Paradox 
  

Informal Statement 
 
Situation: 
 
A light bulb, electronic component, any gadget is placed into service at time 0. As 
soon as it fails, it is replaced. This process continues indefinitely. 
 
A component has a random lifetime with mean !. 
 
Pick and fix a time ! > !. The component in service at time ! tends to have a 
lifetime greater than a typical component. If ! is large compared to !, the 
tendency is significant. 
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Inspection Paradox: The Poisson Case                                  (1) 
 
Situation: 
 
Random variable Χ represents the lifetime of a component. Χ is exponentially 
distributed with parameter !, i.e., 
 
!!!!!!!!!!!!!!!!!!! ! = !!!!"  if ! ≥ 0                       (pdf that describes X) 
 
 !!!!!!!E X = !

!                                                 (expectation of X) 
 
Component 1 lasts X! units of time and is replaced by component 2, which lasts 
X! units of time, . . . etc. 
 
X!, !X!… !X!  . . . are independent and are distributed as X. 
 
Let L! represent the lifetime of the component that is in service at time !. Naively, 
L! is also distributed as X. But it is not. 
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Inspection Paradox: The Poisson Case                                  (2) 
 
The pdf that describes L! is !!! , where 
 
 
 
  !!! ! = !!!!!!!"!!"!0 < ! ≤ !

! 1+ !" !!!"!!"!! < ! 

 
and 
 
                ! !! = !

! +
!
! 1− !!!" → 2! ! !!"!! ↑ ∞!!! 

 
 
The next visual displays a graphic example. 
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Items in service at time T have longer lives than the standard item 

T=3 for graphs 1 and 2.  T=5 for graph 3. 
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TI-84 screen to calculate length of segment that straddles location T 
 
 
 

 
Poisson case with λ=1 and T=5. 

 
A run of 20 simulations yielded an average length of 2.4. 
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Six realizations of a portion of a Poisson Process

Each interarrival is a sample of an exponentially distributed, mean 1 random variable

0"

1"

2"

3"

4"

5"

6"

7"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15"
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Survival Bias	
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Survival Bias              (1) 
   
I begin with what I think is a remarkable story. Epoch: early 1940s. Location: 
West 118th Street, NYC. Institution:  Statistical Research Group (SRG) formed to 
advise the military on warfare issues. Abraham Wald is a member of this group.  
 
A group of military officers brings to SRG the following data about planes 
returning from missions over Europe. 
 
 Section of plane  Bullet holes per square foot 
 
 Engine     1.11 
 Fuselage    1.73 
 Fuel system    1.55 
 Rest of the plane   1.8 
 
Armor is known to degrade range and performance of aircraft. The officers 
reasoned that you can get equivalent protection with less armor if you 
concentrate the armor on the places getting the most hits. But they wanted 
technical advice on how to redistribute that armor. Instead, Wald says: 
 
The armor goes where the bullet holes aren’t: on the engines. 
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Survival Bias              (2) 
 
 
              
Wald asked himself: Where would the missing holes be if the damage were 
uniformly distributed over the plane? 

 

His answer to himself: The missing holes were on the missing planes. And they 

are missing because of hits to the engine area, which brought down those planes. 
 

And so the statistical concept of Survival Bias was born 
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 Survival Bias is alive and well today       (1) 
 
Articles and books about successful outliers sell. Those about failures do not. 
 
• Good to Great, Jim Collins, 2001  

 
An example of predicting those who will do well after finding those who 
did well. 
 
Screened 11 companies out of 1435 whose stocks beat the market over a 40-
year period. Then searched for common characteristics that he believed led 
to their success. 
 
That is an example of “history”; not useful for predictive purposes. 
 
Incidentally, in the 2001-2012 epoch 6 of the 11 underperformed 
 

• Want to be the next Steve Jobs? Drop out of college, join some 
acquaintances, start to work in your garage. 
 
Maybe you will succeed; high probability that you will wind up with a 
garage full of junk. 
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Survival Bias is alive and well today       (2) 
 
 The usual path to wealth by Silicon Valley startups: 
 
 (Get venture capital) → (initial public offering) 

 or  
      (being acquired) 
 

Last year: 1334 got funded; 81 achieved IPO or acquisition. 
 
And we will never know how many bailed out before getting funding. 
 
(Data from the National Venture Capital Association) 
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Closure	
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Two famous historical examples of sampling from the 
wrong population             (1) 
 
• 1936 Presidential Election 

 
Incumbent Franklin Delano Roosevelt (aka FDR) vs Alf Landon 
 
Literary Digest magazine polled over 2 million persons via mail and 
predicted that Landon would win by a large margin. Landon took two 
states: Maine and Vermont. 
 
George Gallup polled 50,000 and predicted that FDR would win. That 
prediction put Gallup on the map. 
 
What went wrong for Literary Digest? Literary Digest polled its readers, 
registered automobile owners and telephone users. Those populations 
contained an over-representation of the rich. 
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Two famous historical examples of sampling from the 
wrong population             (2) 
 
• 1948 Presidential Election 

 
Incumbent Harry Truman vs Tom Dewey 
 
Chicago Tribune printed DEWEY DEFEATS TRUMAN headline 
 
The editors trusted a phone survey. Telephones were not widespread. (To be 
fair, almost all polls got it wrong, including Gallup.) 
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A Look Back 
 
 I have discussed four cases: 
 
• The sibling gender-problem and a generalization thereof 

 
• Berkson’s Paradox 

 
• The Inspection Paradox 

 
• Survival Bias 

 
 
 
 
Many additional sampling anomalies, sampling traps and outright fraudulent 
statistical schemes exist.  Some have colorful names: Texas sharpshooter, 
caveman effect, moving the goal post, Will Rogers phenomenon, cherry picking. 
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Opinion 
 
• Acquiring a representative sample in real-world applications is impossible. 

But decisions have to be made. Awareness of sampling difficulties improves 
interpretation of and adjustment of imperfect results. 

 
• We probably should not burden elementary statistics students with these 

observations. 
 
 
 
 
Motto:  
 
Tell them the truth and nothing but the truth, but don’t tell them the whole 
truth. 
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Thank you for aBending	
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