Randomness

Randomness In Theory and Practice

Alon Amit
CMC3 Conference
Monterey, Dec 2014

Randomness

Randomness

Randomness
 Mathematics

1. Tournaments

0

0

Rule: every 3 players O $\begin{gathered}\text { simultaneously lose } \\ \text { to someone. }\end{gathered}$

0

0
0
0

0

O

Rule: every 3 players O | $\begin{array}{c}\text { simultaneously lose } \\ \text { to someone. }\end{array}$ |
| :---: |

0

0
0

0

0

0
0

Rule: every 3 players

O | $\begin{array}{c}\text { simultaneously lose } \\ \text { to someone. }\end{array}$ |
| :---: |

0
O
0

0

0
0

Rule: every 3 players

O | $\begin{array}{c}\text { simultaneously lose } \\ \text { to someone. }\end{array}$ |
| :---: |

0

0
0

0

0

O Can this be done? O

0
0
0

0

0
0

0
 YES.

0

0
O
0

O

O
O

O

Actually...

O

0
0
0

0
0
O

O No.
0

O
O
O

O Fail probability: 7/8

0

O

O
O
O

O
All

O
O

0

0

$$
\begin{aligned}
& \text { Total Failed } \\
& \text { Tournaments: } \\
& \binom{100}{3}\left(\frac{7}{8}\right)^{97}
\end{aligned}
$$

0

At least 2/3 of those random assignments succeed.

Method

Sometimes it's easier to randomly choose than to explicitly construct.

Often, 99.9\% of the objects have what you need...

...but you can't find them!

2. High Girth and Chromatic Number

Graphs

Graphs

Vertices

Graphs

Edges

Graphs

Vertices $=\{A, B, C, D, E, F\}$
Edges $=\{\{A, B\},\{A, E\},\{B, C\},\{C, D\},\{C, F\},\{B, F\}\}$

Graphs

Cycles

Graphs

Cycles

Graphs

Shortest Cycle $=$ Girth $=3$

Graphs

Coloring

Graphs

Chromatic Number $=3$

Can a graph have both high girth and large chromatic number?

High girth: 2-colorable locally everywhere.

How can we force many colors if every region is 2-colorable?

That's HARD.

Unless...

- Take many vertices
- Choose each edge with probability p
- Carefully choose p
- Make the graph have few short cycles and small independence number
- Remove vertices to eliminate short cycles
- Voila!

3. The Existence of Designs

7 points
Sets of size 3
Every 2 points are in exactly 1 set

n points
 Sets of size q

 Every r points are in exactly λ setsn points
Sets of size q
Every r points are in exactly λ sets

nqr入?

ngr入?

Divisibility conditions Finitely many exceptions in n

Asked: 1853

Answered: Jan 15, 2014

Solver: Peter Keevash

Method: Randomized Algebraic Construction

- Rephrase the problem as hypergraph matching
- Seek a matching by randomly picking edges and deleting their overlaps
- The beginning is easy, but the end is out of control
- Keevash: Cleverly pick stand-ins for the end game

4. The Crossing Lemma

Crossing Number:

 Minimum number of edge crossings in a plane drawing of a graph

Crossing Lemma: if $e \geq 4 v$ then $\operatorname{cr}(G) \geq \frac{e^{3}}{64 v^{2}}$

- Fact (easy): $\operatorname{cr}(G) \geq e-3 v$
- Start with any graph
- Pick a random subgraph H by choosing each vertex with probability p
- Find the expected number of vertices, edges and crossings of H
- Apply the easy fact. Pick the best p. Done!

5. Algorithms

Quicksort

Codes

Primality Testing

Min-Cut

Matrix Testing

Machine Learning

Machine Learning

Machine Learning

Learn from data: features and outcomes
Predict: Given features, what's the outcome?

Decision Trees

Decision Trees are great...

...Random Forests are Even Better.

...Random Forests are Even Better. Train 100 decision trees with random data and random features

Merge into one predictor

Random Forests

Perhaps the single most successful Machine Learning paradigm

Ever.

Summary

Randomness

Mathematics

Randomness

Mathematics

Artificial Intelligence

