Bug 1 – Homework

Suppose a bug is moving on a number line. At time t (seconds), his position is s (feet from the origin). Draw a diagram to represent the motion of the bug.

Bug 2 – Homework

Refer to **Rectilinear Motion 1 – Homework Answers**.

For each diagram answer the following questions.

- 1. What is the bug's displacement from 0 sec to 4 sec? a. What is the bug's average velocity from 0 sec to 4 sec? b. What is the bug's total distance traveled from 0 sec to 4 sec? c. 2. What is the bug's displacement from $-2 \sec to 1 \sec^2$? a. What is the bug's average velocity from -2 sec to 1 sec? b. c. What is the bug's total distance traveled from $-2 \sec to 1 \sec^2$? 3. a. What is the bug's displacement from -1 sec to 3 sec? What is the bug's average velocity from -1 sec to 3 sec? b. What is the bug's total distance traveled from -1 sec to 3 sec? c. 4. a. What is the bug's displacement from $-2 \sec to 3 \sec^2$? b. What is the bug's average velocity from $-2 \sec to 3 \sec$? What is the bug's total distance traveled from $-2 \sec to 3 \sec?$ c. 5. What is the bug's displacement from -1 sec to 7 sec? a. What is the bug's average velocity from -1 sec to 7 sec? b. What is the bug's total distance traveled from -1 sec to 7 sec? c. d. What is the bug's displacement from 0 sec to 2 sec? What is the bug's average velocity from 0 sec to 2 sec? e. f. What is the bug's total distance traveled from 0 sec to 2 sec? 6. What is the bug's displacement from 0 sec to 5 sec? a. b. What is the bug's average velocity from 0 sec to 5 sec?
- c. What is the bug's total distance traveled from 0 sec to 5 sec?
- d. What is the bug's displacement from 1 sec to 4 sec?
- e. What is the bug's average velocity from 1 sec to 4 sec?
- f. What is the bug's total distance traveled from 1 sec to 4 sec?

Bug 2 – Homework Answers

1. a. b. c.	3 ft 3/4 ft/sec 3 ft
2. a. b. c.	-4 ft -4/3 ft/sec 4 ft
3. a. b. c.	0 ft 0 ft/sec 10 ft
4. a. b. c.	-5 ft -1 ft/sec 13 ft
5. a. b. c. d. e. f.	4 ft 1/2 ft/sec 24 ft -2 ft -1 ft/sec 2 ft
6. a. b. c. d. e. f.	6 ft 6/5 ft/sec 14 ft 3 ft 1 ft/sec 5 ft

Suppose a bug is moving on a number line. At time *t* (seconds), his position is *s* (feet from the origin). Let f(t) = s.

1. s = 2t - 1

- a. Where is the bug at 5 sec?
- b. Where is the bug at 0 sec?
- c. Where is the bug at 100 sec?
- d. Where is the bug at $-5 \sec^2$?
- e. When is the bug at 7 ft?
- f. When is the bug at 0 ft?
- g. When is the bug at 10 ft?
- h. When is the bug at -3 ft?
- i. What is the bug's displacement from 1 sec to 4 sec?
- j. What is the bug's displacement from 10 sec to 20 sec?
- k. What is the bug's displacement from 0 sec to 5 sec?
- 1. What is the bug's displacement from $-15 \sec to -7 \sec^2$?
- m. What is the bug's average velocity from 1 sec to 4 sec?
- n. What is the bug's average velocity from -1 sec to 9 sec?
- o. What is the bug's average velocity from 0 sec to 9 sec?
- p. What is the bug's average velocity from $-7 \sec to -5 \sec^2$?

2. f(t) = -3t + 2

- a. Where is the bug at 0 sec?
- b. Where is the bug at 10 sec?
- c. Where is the bug at $-6 \sec^2$?
- d. Where is the bug at 3 sec?
- e. When is the bug at 0 ft?
- f. When is the bug at 11 ft?
- g. When is the bug at -13 ft?
- h. When is the bug at 7 ft?
- i. What is the bug's displacement from 2 sec to 6 sec?
- j. What is the bug's displacement from $-5 \sec to -3 \sec^2$?
- k. What is the bug's displacement from $-2 \sec to 5 \sec ?$
- 1. What is the bug's displacement from 0 sec to 3 sec?
- m. What is the bug's average velocity from 2 sec to 6 sec?
- n. What is the bug's average velocity from 1 sec to 10 sec?
- o. What is the bug's average velocity from $-6 \sec to -1 \sec^2 t$
- p. What is the bug's average velocity from $-2 \sec to 2 \sec$?

- $3. \qquad f(t) = t^2$
- a. Where is the bug at 2 sec?
- b. Where is the bug at $-3 \sec^2$?
- c. Where is the bug at 0 sec?
- d. Where is the bug at -10 sec?
- e. When is the bug at 16 ft?
- f. When is the bug at 1 ft?
- g. When is the bug at 5 ft?
- h. When is the bug at -4 ft?
- i. What is the bug's displacement from 1 sec to 4 sec?
- j. What is the bug's displacement from $-2 \sec to 2 \sec?$
- k. What is the bug's displacement from -3 sec to 1 sec?
- 1. What is the bug's displacement from $-5 \sec to -1 \sec ?$
- m. What is the bug's average velocity from 1 sec to 4 sec?
- n. What is the bug's average velocity from -1 sec to 1 sec?
- o. What is the bug's average velocity from $-2 \sec to 4 \sec^2$?
- p. What is the bug's average velocity from -7 sec to -1 sec?

$4. \qquad f(t) = -t^2 + 2$

- a. Where is the bug at 0 sec?
- b. Where is the bug at 1 sec?
- c. Where is the bug at 2 sec?
- d. Where is the bug at $-5 \sec^2$?
- e. When is the bug at -7 ft?
- f. When is the bug at 0 ft?
- g. When is the bug at 3 ft?
- h. When is the bug at -4 ft?
- i. What is the bug's displacement over the time interval [1, 4]?
- j. What is the bug's displacement over the time interval [4, 5]?
- k. What is the bug's displacement over the time interval [-2, 2]?
- 1. What is the bug's displacement over the time interval [-7, -3]?
- m. What is the bug's average velocity over the time interval [1, 4]?
- n. What is the bug's average velocity over the time interval [-5, -3]?
- o. What is the bug's average velocity over the time interval [-4, 4]?
- p. What is the bug's average velocity over the time interval [-6, 10]?

- a. Where is the bug at 4 sec?
- b. Where is the bug at 0 sec?
- c. Where is the bug at -1 sec?
- d. Where is the bug at 1 sec?
- e. When is the bug at -1 ft?
- f. When is the bug at 0 ft?
- g. When is the bug at 3 ft?
- h. When is the bug at 8 ft?
- i. What is the bug's displacement over the time interval [-1, 1]?
- j. What is the bug's displacement over the time interval [4, 5]?
- k. What is the bug's displacement over the time interval [-1, 4]?
- 1. What is the bug's displacement over the time interval [0, 4]?
- m. What is the bug's average velocity over the time interval [-1, 1]?
- n. What is the bug's average velocity over the time interval [-1, 5]?
- o. What is the bug's average velocity over the time interval [1, 4]?
- p. What is the bug's average velocity over the time interval [0, 2]?
- q. When is the bug at rest?
- r. Where is the bug at rest?
- s. What is the bug's total distance traveled over the time interval [-1, 1]?
- t. What is the bug's total distance traveled over the time interval [1, 3]?
- u. What is the bug's total distance traveled over the time interval [0, 3]?
- v. What is the bug's total distance traveled over the time interval [0, 5]?

t	-3	-2	-1	0	1	2	3
f(t)	10	7	3	5	8	3	-1

- a. Where is the bug at 1 sec?
- b. Where is the bug at $-2 \sec$?
- c. Where is the bug at 0 sec?
- d. Where is the bug at 3 sec?
- e. Name one time that the bug is at -1 ft.
- f. Name one time that the bug is at 5 ft.
- g. Name one time that the bug is at 10 ft.
- h. Name two times that the bug is at 3 ft.
- i. What is the bug's displacement over the time interval [-2, 1]?
- j. What is the bug's displacement over the time interval [-3, 3]?
- k. What is the bug's displacement over the time interval [0, 1]?
- 1. What is the bug's displacement over the time interval [0, 2]?
- m. What is the bug's average velocity over the time interval [-2, 1]?
- n. What is the bug's average velocity over the time interval [-1, 2]?
- o. What is the bug's average velocity over the time interval [-2, 3]?
- p. What is the bug's average velocity over the time interval [0, 3]?

7. f(t) = 5

- a. Where is the bug at 3 sec?
- b. Where is the bug at 0 sec?
- c. Where is the bug at -1 sec?
- d. Where is the bug at 100 sec?
- e. When is the bug at 0 ft?
- f. When is the bug at 2 ft?
- g. When is the bug at 5 ft?
- h. When is the bug at -3 ft?
- i. What is the bug's displacement over the time interval [1, 2]?
- j. What is the bug's displacement over the time interval [2, 10]?
- k. What is the bug's displacement over the time interval [-3, 0]?
- 1. What is the bug's displacement over the time interval [-7, 5]?
- m. What is the bug's average velocity over the time interval [1, 3]?
- n. What is the bug's average velocity over the time interval [5, 9]?
- o. What is the bug's average velocity over the time interval [-8, -4]?
- p. What is the bug's average velocity over the time interval [-10, 100]?

	1.	2.	3.	4.	5.	6.	7.
a	9 ft	2 ft	4 ft	2 ft	3 ft	8 ft	5 ft
b	-1 ft	-28 ft	9 ft	1 ft	3 ft	7 ft	5 ft
с	199 ft	20 ft	0 ft	-2 ft	8 ft	5 ft	5 ft
d	-11 ft	-7 ft	100 ft	-23 ft	0 ft	-1 ft	5 ft
e	4 sec	2/3 sec	±4 sec	±3 sec	2 sec	3 sec	never
f	1/2 sec	-3 sec	±1 sec	$\pm\sqrt{2}$ sec	1,3 sec	0 sec	never
g	11/2 sec	5 sec	$\pm\sqrt{5}$ sec	never	0,4 sec	-3 sec	always
h	-1 sec	-5/3 sec	never	$\pm\sqrt{6}$ sec	-1,5 sec	-1,2 sec	never
i	6 ft	-12 ft	15 ft	-15 ft	-8 ft	1 ft	0 ft
j	20 ft	-6 ft	0 ft	-9 ft	5 ft	-11 ft	0 ft
k	10 ft	-21 ft	-8 ft	0 ft	-5 ft	3 ft	0 ft
1	16 ft	–9 ft	-24 ft	40 ft	0 ft	-2 ft	0 ft
m	2 ft/sec	-3 ft/sec	5 ft/sec	-5 ft/sec	-4 ft/sec	1/3 ft/sec	0 ft/sec
n	2 ft/sec	-3 ft/sec	0 ft/sec	8 ft/sec	0 ft/sec	0 ft/sec	0 ft/sec
0	2 ft/sec	-3 ft/sec	2 ft/sec	0 ft/sec	1 ft/sec	-8/5 ft/sec	0 ft/sec
р	2 ft/sec	-3 ft/sec	-8 ft/sec	-4 ft/sec	-2 ft/sec	-2 ft/sec	0 ft/sec
q					2 sec		
r					-1 ft		
S					8 ft		
t					2 ft		
u					5 ft		
v					13 ft		

Bug 3 – Homework Answers

Bug 4 – Homework

Suppose a bug is moving on a number line. At time *t* (seconds), his position is *s* (feet from the origin). Let f(t) = s.

1. f(t) = 3t + 4

a. Fill in the table.

time interval	displacement	average velocity
[1, 2]	ft	ft/sec
[1.5, 2]	ft	ft/sec
[1.9, 2]	ft	ft/sec
[1.99, 2]	ft	ft/sec
[2, 2.01]	ft	ft/sec
[2, 2.1]	ft	ft/sec
[2, 2.5]	ft	ft/sec
[2, 3]	ft	ft/sec

- b. What is the bug's instantaneous velocity at 2 sec?
- c. What can you say about the instantaneous velocity when the position function is linear?

- 2. $f(t) = 4 t^2$
- a. Fill in the table.

time interval	displacement	average velocity
[0, 1]	ft	ft/sec
[0.5, 1]	ft	ft/sec
[0.9, 1]	ft	ft/sec
[0.99, 1]	ft	ft/sec
[1, 1.01]	ft	ft/sec
[1, 1.1]	ft	ft/sec
[1, 1.5]	ft	ft/sec
[1, 2]	ft	ft/sec

- b. What is the bug's instantaneous velocity at 1 sec?
- c. The graph of the position function is below. Draw a line that is related to the intantaneous velocity at 1 sec.

- d. How is the line related to the intantaneous velocity at 1 sec?
- e. What is the line called?

- 3. $f(t) = 2t^2 + 1$
- a. Fill in the table.

time interval	displacement	average velocity
[-2, -1]	ft	ft/sec
[-1.5, -1]	ft	ft/sec
[-1.1, -1]	ft	ft/sec
[-1.01, -1]	ft	ft/sec
[-1, -0.99]	ft	ft/sec
[-1, -0.9]	ft	ft/sec
[-1, -0.5]	ft	ft/sec
[-1, 0]	ft	ft/sec

- b. What is the bug's instantaneous velocity at -1 sec?
- c. The graph of the position function is below. Draw a line that is related to the intantaneous velocity at -1 sec.

- d. How is the line related to the intantaneous velocity at -1 sec?
- e. What is the line called?

1.

a.		
t. i.	disp.	a. v.
[1, 2]	3 ft	3 ft/sec
[1.5, 2]	1.5 ft	3 ft/sec
[1.9, 2]	0.3 ft	3 ft/sec
[1.99, 2]	0.03 ft	3 ft/sec
[2, 2.01]	0.03 ft	3 ft/sec
[2, 2.1]	0.3 ft	3 ft/sec
[2, 2.5]	1.5 ft	3 ft/sec
[2, 3]	3 ft	3 ft/sec

- b. 3 ft/sec
- c. The instantaneous velocity is the slope of the linear function.

2.

8	l .		
	t. i.	disp.	a. v.
	[0, 1]	-1 ft	-1 ft/sec
	[0.5, 1]	-0.75 ft	-1.5 ft/sec
	[0.9, 1]	-0.19 ft	-1.9 ft/sec
	[0.99, 1]	-0.0199 ft	-1.99 ft/sec
	[1, 1.01]	-0.0201 ft	-2.01 ft/sec
	[1, 1.1]	-0.21 ft	-2.1 ft/sec
	[1, 1.5]	-1.25 ft	-2.5 ft/sec
	[1, 2]	-3 ft	-3 ft/sec

- 2.
- d. The slope of the line is
- the instantaneous velocity.
- e. tangent line

3.

a			
	t. i.	disp.	a. v.
	[-2, -1]	–6 ft	-6 ft/sec
	[-1.5, -1]	-2.5 ft	-5 ft/sec
	[-1.1, -1]	-0.42 ft	-4.2 ft/sec
	[-1.01, -1]	-0.0402 ft	-4.02 ft/sec
	[-1, -0.99]	-0.0398 ft	-3.98 ft/sec
	[-1, -0.9]	-0.38 ft	-3.8 ft/sec
	[-1, -0.5]	-1.5 ft	-3 ft/sec
	[-1, 0]	-2 ft	-2 ft/sec

- d. The slope of the line is the instantaneous velocity.
- e. tangent line

Bug 5 – Homework

Suppose a bug is moving on a number line. At time t (seconds), his position is s (feet from the origin). Let f(t) = s. Each graph contains f and a tangent line to a point on f. Use that point to find the bug's time, position, and instantaneous velocity.

©2005 Joe Vasta

Bug 5 – Homework Answers

1.	time = 4 sec	position $= 2$ ft	velocity = 1 ft/sec
2.	time = $2 \sec \theta$	position = -3 ft	velocity = -4 ft/sec
3.	time = -3 sec	position = 4 ft	velocity = 3/4 ft/sec
4.	time = $-2 \sec \theta$	position = –6 ft	velocity = -3 ft/sec
5.	time = 1 sec	position $= 3$ ft	velocity = 0 ft/sec
6.	time = -1 sec	position = 1 ft	velocity = 2 ft/sec

Bug 6 – Homework

Suppose a bug is moving on a number line. At time *t* (seconds), his position is *s* (feet from the origin). Let f(t) = s. For each position function do the following.

- a. Compute the difference quotient.
- b. Compute the velocity function.
- c. Find the bug's (instantaneous) velocity at 2 sec.
- d. Find the bug's velocity at -1 sec.

1.
$$f(t) = 5t + 1$$

- 2. $f(t) = t^2 4$
- 3. $f(t) = 3 2t^2$
- 4. $f(t) = 3t^2 5t + 4$
- 5. $f(t) = 6t^2 + 3t 1$
- 6. $f(t) = -4t^2 9t + 2$
- 7. $f(t) = t^3 + 2t 4$

8.
$$f(t) = t^3 + 2t^2 - 3t + 5$$

Bug 6 – Homework Answers

1.	a. b. c. d.	DQ = 5 v(t) = 5 5 ft/sec 5 ft/sec
2.	a. b. c. d.	DQ = 2t + h v(t) = 2t 4 ft/sec -2 ft/sec
3.	a. b. c. d.	DQ = -4t - 2h v(t) = -4t -8 ft/sec 4 ft/sec
4.	a. b. c. d.	DQ = 6t + 3h - 5 v(t) = 6t - 5 7 ft/sec -11 ft/sec
5.	a. b. c. d.	DQ = 12t + 6h + 3 v(t) = 12t + 3 27 ft/sec -9 ft/sec
6.	a. b. c. d.	DQ = -8t - 4h - 9 v(t) = -8t - 9 -25 ft/sec -1 ft/sec
7.	a. b. c. d.	DQ = $3t^{2} + 3ht + h^{2} + 2$ $v(t) = 3t^{2} + 2$ 14 ft/sec 5 ft/sec
8.	a. b. c. d.	$DQ = 3t^{2} + 3ht + h^{2} + 4t + 2h - 3$ $v(t) = 3t^{2} + 4t - 3$ 17 ft/sec -4 ft/sec

Bug 7 – Homework

Suppose a bug is moving on a number line. At time *t* (seconds), his position is *s* (feet from the origin). Let f(t) = s.

1.
$$f(t) = t^2 + 6t - 1$$

- a. Compute the velocity function.
- b. Where is the bug at 2 sec?
- c. What is the bug's velocity at 2 sec?
- d. Where is the bug at 0 sec?
- e. What is the bug's velocity at 0 sec?
- f. Where is the bug at $-4 \sec^2$?
- g. What is the bug's velocity at -4 sec?
- h. When is the bug at velocity -10 ft/sec?
- i. Where is the bug at velocity -10 ft/sec?
- j. When is the bug at velocity 4 ft/sec?
- k. Where is the bug at velocity 4 ft/sec?
- 1. When is the bug at velocity 14 ft/sec?
- m. Where is the bug at velocity 14 ft/sec?
- n. When is the bug at rest?
- o. Where is the bug at rest?
- p. When is the bug traveling in the positive direction?
- q. When is the bug traveling in the negative direction?
- r. Draw a diagram to represent the motion of the bug.
- s. What is the bug's displacement over the time interval [-5, 2]?
- t. What is the bug's average velocity over the time interval [-5, 2]?
- u. What is the bug's total distance traveled over the time interval [-5, 2]?
- v. What is the bug's displacement over the time interval [-6, 0]?
- w. What is the bug's average velocity over the time interval [-6, 0]?
- x. What is the bug's total distance traveled over the time interval [-6, 0]?
- y. What is the bug's displacement over the time interval [-7, -4]?
- z. What is the bug's average velocity over the time interval [-7, -4]?
- \bigcirc . What is the bug's total distance traveled over the time interval [-7, -4]?

- 2. $f(t) = -t^2 + 4t + 1$
- a. Compute the velocity function.
- b. Where is the bug at 7 sec?
- c. What is the bug's velocity at 7 sec?
- d. Where is the bug at 0 sec?
- e. What is the bug's velocity at 0 sec?
- f. Where is the bug at $-1 \sec ?$
- g. What is the bug's velocity at -1 sec?
- h. When is the bug at velocity 12 ft/sec?
- i. Where is the bug at velocity 12 ft/sec?
- j. When is the bug at velocity -2 ft/sec?
- k. Where is the bug at velocity -2 ft/sec?
- 1. When is the bug at velocity 3 ft/sec?
- m. Where is the bug at velocity 3 ft/sec?
- n. When is the bug at rest?
- o. Where is the bug at rest?
- p. When is the bug traveling in the positive direction?
- q. When is the bug traveling in the negative direction?
- r. Draw a diagram to represent the motion of the bug.
- s. What is the bug's displacement over the time interval [-1, 7]?
- t. What is the bug's average velocity over the time interval [-1, 7]?
- u. What is the bug's total distance traveled over the time interval [-1, 7]?
- v. What is the bug's displacement over the time interval [-2, 0]?
- w. What is the bug's average velocity over the time interval [-2, 0]?
- x. What is the bug's total distance traveled over the time interval [-2, 0]?
- y. What is the bug's displacement over the time interval [-4, 4]?
- z. What is the bug's average velocity over the time interval [-4, 4]?
- \bigcirc . What is the bug's total distance traveled over the time interval [-4, 4]?

- 3. $f(t) = t^3 3t^2 2$
- a. Compute the velocity function.
- b. Where is the bug at -1 sec?
- c. What is the bug's velocity at $-1 \sec ?$
- d. When is the bug at velocity 24 ft/sec?
- e. Where is the bug at velocity 24 ft/sec?
- f. When is the bug at rest?
- g. Where is the bug at rest?
- h. When is the bug traveling in the positive direction?
- i. When is the bug traveling in the negative direction?
- j. Draw a diagram to represent the motion of the bug.
- k. What is the bug's displacement over the time interval [-2, 4]?
- 1. What is the bug's average velocity over the time interval [-2, 4]?
- m. What is the bug's total distance traveled over the time interval [-2, 4]?

	1.	2.	3.
a	v(t) = 2t + 6	v(t) = -2t + 4	$v(t) = 3t^2 - 6t$
b	15 ft	-20 ft	-6 ft
c	10 ft/sec	-10 ft/sec	9 ft/sec
d	-1 ft	1 ft	-2, 4 sec
e	6 ft/sec	4 ft/sec	-22, 14 ft
f	-9ft	-4ft	0, 2 sec
g	-2 ft/sec	6 ft/sec	-2, -6 ft
h	-8 sec	-4 sec	t < 0 or t > 2
i	15 ft	-31 ft	0 < <i>t</i> < 2
j	-1 sec	3 sec	(next page)
k	-6 ft	4 ft	36 ft
1	4 sec	1/2 sec	6 ft/sec
m	39 ft	11/4 ft	44 ft
n	-3 sec	2 sec	
0	-10 ft	5 ft	
р	t > -3	<i>t</i> < 2	
q	<i>t</i> < -3	<i>t</i> > 2	
r	(next page)	(next page)	
S	21 ft	-16 ft	
t	3 ft/sec	-2 ft/sec	
u	29 ft	34 ft	
v	0 ft	12 ft	
w	0 ft/sec	6 ft/sec	
x	18 ft	12 ft	
У	-15 ft	32 ft	
Z	-5 ft/sec	4 ft/sec	
\odot	15 ft	40 ft	

Bug 7 – Homework Answers

1r.

Bug 8 – Homework

Suppose a bug is moving on a number line. At time *t* (seconds), his position is *s* (feet from the origin). Let f(t) = s.

For each position function, find the bug's **speed** at 3 sec.

- 1. f(t) = 13
- 2. f(t) = 2t + 1
- 3. f(t) = 7 4t
- 4. $f(t) = 2t^2 15t + 1$
- 5. $f(t) = -t^2 + 4t + 7$
- 6. $f(t) = t^3 t^2 8t 5$
- 7. $f(t) = t^3 5t^2 6t + 4$

Bug 8 – Homework Answers

- 1. 0 ft/sec
- 2. 2 ft/sec
- 3. 4 ft/sec
- 4. 3 ft/sec
- 5. 2 ft/sec
- 6. 13 ft/sec
- 7. 9 ft/sec

Bug 9 – Homework

Suppose a bug is moving on a number line. At time t (seconds), his position is s (feet from the origin). For each position function do the following.

- a. Find the bug's velocity at 1 sec.
- b. Find the bug's acceleration at 1 sec.
- c. At 1 sec, is the bug speeding up, slowing down, or neither?

1.
$$s(t) = t^2 - 6t$$

$$2. \qquad s(t) = -t^2 - 4t$$

$$3. \qquad s(t) = 3t^2 - 6t$$

4.
$$s(t) = 2t^2 + 3t + 1$$

5.
$$s(t) = -4t^2 + 9t - 7$$

6.
$$s(t) = t^3 - 6t^2 + 2$$

7.
$$s(t) = -t^3 + 3t^2 + 3$$

8.
$$s(t) = t^3 - t^2 - 5t - 4$$

9.
$$s(t) = 2t^3 + 3t^2 - 12t + 5$$

10.
$$s(t) = -2t^3 + 4t^2 + 5t - 6$$

Bug 9 – Homework Answers

- 1. a. -4 ft/sec
 - b. 2 ft/sec^2
 - c. slowing down
- 2. a. -6 ft/sec
 - b. -2 ft/sec^2
 - c. speeding up
- 3. a. 0 ft/sec
 - b. 6 ft/sec^2
 - c. neither
- 4. a. 7 ft/sec
 - b. 4 ft/sec^2
 - c. speeding up
- 5. a. 1 ft/sec
 - b. -8 ft/sec^2
 - c. slowing down
- 6. a. -9 ft/sec
 - b. -6 ft/sec^2
 - c. speeding up
- 7. a. 3 ft/sec
 - b. 0 ft/sec^2
 - c. neither
- 8. a. -4 ft/sec
 - b. 4 ft/sec^2
 - c. slowing down
- 9. a. 0 ft/sec
 - b. 18 ft/sec^2
 - c. neither
- 10. a. 7 ft/sec
 - b. -4 ft/sec^2
 - c. slowing down

Bug 10 – Homework

Suppose a bug is moving on a number line. At time t (seconds), his position is s (feet from the origin). For each position function and time interval do the following.

- a. Find the bug's average velocity over the time interval.
- b. Find all the times that satisfy the conclusion of the Mean Value Theorem. Round irrational answers to the nearest hundredth.

1.
$$s(t) = t^2 + 3t - 4; [1, 4]$$

2.
$$s(t) = -t^2 + t + 5; [1, 5]$$

3.
$$s(t) = t^3 - t^2 - 3t - 2; [1, 4]$$

4.
$$s(t) = t^3 - t^2 - t + 1; [0, 3]$$

5.
$$s(t) = t^3 + 2t^2 - 3t - 5; [-3, -1]$$

6.
$$s(t) = 2t^3 + 3t^2 - 6t + 2; [-3, 2]$$

7.
$$s(t) = -t^3 + t^2 + t + 2; [-2, 1]$$

8.
$$s(t) = -t^3 - 3t^2 + 4t - 5; [-5, 2]$$

9.
$$s(t) = -t^3 - 4t^2 - t + 3; [-2, 2]$$

10.
$$s(t) = t^3 - 6t^2 + 10t - 3; [0, 2]$$

11.
$$s(t) = t^3 - 10t^2 + 32t - 34; [2, 5]$$

Bug 10 – Homework Answers

- 1. a. 8 ft/sec 5/2 as
 - b. 5/2 sec
- 2. a. -5 ft/sec b. 3 sec
- 3. a. 13 ft/sec b. 8/3 sec
- 4. a. 5 ft/sec b. 1.79 sec
- 5. a. 2 ft/sec b. -2.12 sec
- 6. a. 5 ft/sec b. -1.94 sec and 0.94 sec
- 7. a. -3 ft/sec b. -0.87 sec
- 8. a. -6 ft/sec b. -3.08 sec and 1.08 sec
- 9. a. -5 ft/sec b. 0.43 sec
- 10. a. 2 ft/sec b. 0.85 sec
- 11. a. 1 ft/sec b. 2.45 sec and 4.22 sec

Bug 11 – Homework

Suppose a bug is moving on a number line. At time t (seconds), his position is s (feet from the origin), and his velocity is v. The graph of the velocity function is given.

1.

- a. What is the bug's velocity at 1 sec?
- b. What is the bug's velocity at 5 sec?
- c. What is the bug's velocity at $-2 \sec ?$
- d. What is the bug's displacement over the time interval [1, 5]?
- e. What is the bug's average velocity over the time interval [1, 5]?
- f. What is the bug's total distance traveled over the time interval [1, 5]?
- g. What is the bug's displacement over the time interval [-2, 7]?
- h. What is the bug's average velocity over the time interval [-2, 7]?
- i. What is the bug's total distance traveled over the time interval [-2, 7]?
- j. What is the bug's displacement over the time interval [2, 4]?
- k. What is the bug's average velocity over the time interval [2, 4]?
- 1. What is the bug's total distance traveled over the time interval [2, 4]?

- a. What is the bug's velocity at 3 sec?
- b. What is the bug's velocity at $-2 \sec$?
- c. What is the bug's velocity at 7 sec?
- d. What is the bug's displacement over the time interval [2, 7]?
- e. What is the bug's average velocity over the time interval [2, 7]?
- f. What is the bug's total distance traveled over the time interval [2, 7]?
- g. What is the bug's displacement over the time interval [-1, 2]?
- h. What is the bug's average velocity over the time interval [-1, 2]?
- i. What is the bug's total distance traveled over the time interval [-1, 2]?
- j. What is the bug's displacement over the time interval [-3, -2]?
- k. What is the bug's average velocity over the time interval [-3, -2]?
- 1. What is the bug's total distance traveled over the time interval [-3, -2]?

- a. What is the bug's velocity at 1 sec?
- b. What is the bug's velocity at 5 sec?
- c. What is the bug's velocity at 4 sec?
- d. What is the bug's displacement over the time interval [2, 4]?
- e. What is the bug's average velocity over the time interval [2, 4]?
- f. What is the bug's total distance traveled over the time interval [2, 4]?
- g. What is the bug's displacement over the time interval [4, 7]?
- h. What is the bug's average velocity over the time interval [4, 7]?
- i. What is the bug's total distance traveled over the time interval [4, 7]?
- j. What is the bug's displacement over the time interval [1, 8]?
- k. What is the bug's average velocity over the time interval [1, 8]?
- 1. What is the bug's total distance traveled over the time interval [1, 8]?

- a. What is the bug's velocity at 0 sec?
- b. What is the bug's velocity at 2 sec?
- c. What is the bug's velocity at 5 sec?
- d. What is the bug's displacement over the time interval [0, 4]?
- e. What is the bug's average velocity over the time interval [0, 4]?
- f. What is the bug's total distance traveled over the time interval [0, 4]?
- g. What is the bug's displacement over the time interval [1, 7]?
- h. What is the bug's average velocity over the time interval [1, 7]?
- i. What is the bug's total distance traveled over the time interval [1, 7]?
- j. What is the bug's displacement over the time interval [1, 2]?
- k. What is the bug's average velocity over the time interval [1, 2]?
- 1. What is the bug's total distance traveled over the time interval [1, 2]?

- a. What is the bug's velocity at 3 sec?
- b. What is the bug's velocity at $-2 \sec$?
- c. What is the bug's velocity at 0 sec?
- d. What is the bug's displacement over the time interval [-2, 3]?
- e. What is the bug's average velocity over the time interval [-2, 3]?
- f. What is the bug's total distance traveled over the time interval [-2, 3]?
- g. What is the bug's displacement over the time interval [-1, 1]?
- h. What is the bug's average velocity over the time interval [-1, 1]?
- i. What is the bug's total distance traveled over the time interval [-1, 1]?
- j. What is the bug's displacement over the time interval [-2, 1]?
- k. What is the bug's average velocity over the time interval [-2, 1]?
- 1. What is the bug's total distance traveled over the time interval [-2, 1]?

- a. What is the bug's velocity at 6 sec?
- b. What is the bug's velocity at 3 sec?
- c. What is the bug's velocity at -1 sec?
- d. What is the bug's displacement over the time interval [1, 5]?
- e. What is the bug's average velocity over the time interval [1, 5]?
- f. What is the bug's total distance traveled over the time interval [1, 5]?
- g. What is the bug's displacement over the time interval [-1, 5]?
- h. What is the bug's average velocity over the time interval [-1, 5]?
- i. What is the bug's total distance traveled over the time interval [-1, 5]?
- j. What is the bug's displacement over the time interval [-3, 6]?
- k. What is the bug's average velocity over the time interval [-3, 6]?
- 1. What is the bug's total distance traveled over the time interval [-3, 6]?

	1.	2.	3.	4.	5.	6.
a.	3 ft/sec	-4 ft/sec	3 ft/sec	-3 ft/sec	-6 ft/sec	2 ft/sec
b.	3 ft/sec	-4 ft/sec	-1 ft/sec	-1 ft/sec	4 ft/sec	0.5 ft/sec
c.	3 ft/sec	-4 ft/sec	0 ft/sec	2 ft/sec	0 ft/sec	-1.5 ft/sec
d.	12 ft	-20 ft	2 ft	-4 ft	-5 ft	2 ft
e.	3 ft/sec	-4 ft/sec	1 ft/sec	-1 ft/sec	-1 ft/sec	0.5 ft/sec
f.	12 ft	20 ft	2 ft	5 ft	13 ft	2.5 ft
g.	27 ft	-12 ft	-4.5 ft	6 ft	0 ft	0 ft
h.	3 ft/sec	-4 ft/sec	-1.5 ft/sec	1 ft/sec	0 ft/sec	0 ft/sec
i.	27 ft	12 ft	4.5 ft	10 ft	2 ft	4.5 ft
j.	6 ft	-4 ft	-3.5 ft	-1.5 ft	3 ft	-2.25 ft
k.	3 ft/sec	-4 ft/sec	-0.5 ft/sec	-1.5 ft/sec	1 ft/sec	-0.25 ft/sec
1.	6 ft	4 ft	12.5 ft	1.5 ft	5 ft	10.25 ft

Bug 11 – Homework Answers

Bug 12 – Homework

Suppose a bug is moving on a number line. At time t (seconds), his position is s (feet from the origin), his velocity is v, and his acceleration is a.

1.	v(t) = 3	If $s(3) = 2$, then find <i>s</i> .
2.	v(t) = -1	If $s(2) = 4$, then find <i>s</i> .
3.	v(t) = 2t - 3	If $s(0) = 5$, then find <i>s</i> .
4.	v(t) = -8t - 2	If $s(2) = -19$, then find <i>s</i> .
5.	v(t) = 16t + 1	If $s(1) = -1$, then find <i>s</i> .
6.	v(t) = -10t + 7	If $s(-1) = -14$, then find <i>s</i> .
7.	v(t) = 6t	If $s(-2) = 16$, then find <i>s</i> .
8.	v(t) = 4t - 5	If $s(4) = 12$, then find <i>s</i> .
9.	a(t)=6	If $v(3) = 22$ and $s(3) = 38$, then find v and s.
10.	a(t) = -10	If $v(1) = -2$ and $s(1) = 7$, then find v and s.
11.	a(t) = 24t - 2	If $v(1) = 8$ and $s(1) = 4$, then find v and s.
12.	a(t) = -6t + 10	If $v(2) = 5$ and $s(2) = 4$, then find v and s.
13.	a(t) = 0	If $v(2) = 10$ and $s(2) = 7$, then find v and s.
14.	a(t) = 12t	If $v(3) = 53$ and $s(3) = 51$, then find v and s.

Bug 12 – Homework Answers

1.
$$s(t) = 3t - 7$$

2. $s(t) = -t + 6$
3. $s(t) = t^2 - 3t + 5$
4. $s(t) = -4t^2 - 2t + 1$
5. $s(t) = 8t^2 + t - 10$
6. $s(t) = -5t^2 + 7t - 2$
7. $s(t) = 3t^2 + 4$
8. $s(t) = 2t^2 - 5t$
9. $v(t) = 6t + 4$

9.
$$v(t) = 6t + 4$$

 $s(t) = 3t^2 + 4t - 1$

10.
$$v(t) = -10t + 8$$

 $s(t) = -5t^2 + 8t + 4$

11.
$$v(t) = 12t^2 - 2t - 2$$

 $s(t) = 4t^3 - t^2 - 2t + 3$

12.
$$v(t) = -3t^2 + 10t - 3$$

 $s(t) = -t^3 + 5t^2 - 3t - 2$

13.
$$v(t) = 10$$

 $s(t) = 10t - 13$

14.
$$v(t) = 6t^2 - 1$$

 $s(t) = 2t^3 - t$

Bug 13 – Homework

Suppose a bug is moving on a number line. At time t (seconds), his position is s (feet from the origin), and his velocity is v. For each velocity function and time interval do the following.

- a. Find the bug's displacement over the time interval.
- b. Find the bug's average velocity over the time interval.
- c. Find the bug's total distance traveled over the time interval.
- d. Find all the times that satisfy the conclusion of the Mean Value Theorem. Round irrational answers to the nearest hundredth.
- 1. $v(t) = 3t^2 3; [0, 4]$
- 2. $v(t) = 3t^2 3; [-1, 2]$
- 3. $v(t) = 3t^2 3; [-1, 0]$

4.
$$v(t) = -6t^2 + 24; [1, 4]$$

5.
$$v(t) = -6t^2 + 24; \ [-1, 3]$$

6.
$$v(t) = -6t^2 + 24; [-2, 1]$$

7.
$$v(t) = 6t^2 - 9t; [1, 3]$$

8. $v(t) = 6t^2 - 9t; [-1, 1]$

9.
$$v(t) = 6t^2 - 9t; [0, 2]$$

10.
$$v(t) = -3t^2 + 12t;$$
 [3, 6]
11. $v(t) = -3t^2 + 12t;$ [-1, 3]
12. $v(t) = -3t^2 + 12t;$ [-2, 5]

13.
$$v(t) = 3t^2 - 6t - 9; [-2, 0]$$

14. $v(t) = 3t^2 - 6t - 9; [1, 4]$
15. $v(t) = 3t^2 - 6t - 9; [-3, 5]$

	a.	b.	с.	d.
1.	52 ft	13 ft/sec	56 ft	2.31 sec
2.	0 ft	0 ft/sec	8 ft	1 sec
3.	-2 ft	-2 ft/sec	2 ft	-0.58 sec
4.	-54 ft	-18 ft/sec	74 ft	2.65 sec
5.	40 ft	10 ft/sec	68 ft	1.53 sec
6.	54 ft	18 ft/sec	54 ft	-1 sec
7.	16 ft	8 ft/sec	17.75 ft	2.13 sec
8.	4 ft	2 ft/sec	9 ft	-0.20 sec
9.	-2 ft	-1 ft/sec	4.75 ft	0.12, 1.38 sec
10.	-27 ft	-9 ft/sec	37 ft	4.65 sec
11.	20 ft	5 ft/sec	34 ft	0.47 sec
12.	-7 ft	-1 ft/sec	71 ft	-0.08, 4.08 sec
13.	2 ft	1 ft/sec	12 ft	-1.08 sec
14.	-9 ft	-3 ft/sec	23 ft	2.73 sec
15.	32 ft	4 ft/sec	96 ft	-1.31, 3.31 sec

Bug 13 – Homework Answers

Bug 14 – Homework

Suppose a bug is moving on the *xy*-plane. At time t (seconds), his position is (x feet, y feet). For each pair of position functions, answer the following questions.

- a. Where is the bug at the given time?
- b. What is the bug's horizontal velocity at the given time?
- c. What is the bug's vertical velocity at the given time?
- d. What is the bug's slope at the given time?
- e. What is the bug's speed at the given time? (Round to the nearest hundredth.)
- 1. $x = t^2 + 3$, $y = -t^2 + 2t$, $t = 2 \sec t$
- 2. $x = -2t^2 1$, $y = 3t^2 + t$, t = 1 sec
- 3. $x = -3t^2 t$, $y = -t^2$, t = -1 sec
- 4. $x = 4t^2 11t$, $y = 2t^2 + 5$, $t = 2 \sec t$
- 5. $x = -t^2 + 3t 4$, $y = t^2 4t + 3$, $t = 3 \sec t$
- 6. $x = 3t^2 8t 1$, $y = -2t^2 6t + 4$, t = 0 sec
- 7. $x = t^3 + 2t^2 t + 1$, $y = -t^2$, t = 1 sec
- 8. $x = t^2 4$, $y = -t^3 + 7t$, $t = -2 \sec t^3$

	a.	b.	с.	d.	e.
1.	(7, 0)	4 ft/sec	-2 ft/sec	-1/2	4.47 ft/sec
2.	(-3, 4)	-4 ft/sec	7 ft/sec	-7/4	8.06 ft/sec
3.	(-2, -1)	5 ft/sec	2 ft/sec	2/5	5.39 ft/sec
4.	(-6, 13)	5 ft/sec	8 ft/sec	8/5	9.43 ft/sec
5.	(-4, 0)	-3 ft/sec	2 ft/sec	-2/3	3.61 ft/sec
6.	(-1, 4)	-8 ft/sec	-6 ft/sec	3/4	10 ft/sec
7.	(3, -1)	6 ft/sec	-2 ft/sec	-1/3	6.32 ft/sec
8.	(0, -6)	-4 ft/sec	-5 ft/sec	5/4	6.40 ft/sec

Bug 14 – Homework Answers

Bug 15 – Homework

Suppose a bug is moving in 3-space. At time t sec, his position is (x ft, y ft, z ft). Let the bug's position, velocity, and acceleration vectors be denoted by $\mathbf{r}(t)$, $\mathbf{v}(t)$ and $\mathbf{a}(t)$, respectively.

- 1. $\mathbf{r}(t) = \langle t^2 3t, 2t^2 + 1, -3t + 2 \rangle$
 - a. Compute the velocity vector.
 - b. Compute the acceleration vector.
 - c. What is the bug's position vector at 2 sec?
 - d. What is the bug's velocity vector at 2 sec?
 - e. What is the bug's speed at 2 sec? (Round to the nearest hundredth.)

2.
$$\mathbf{r}(t) = \langle 2t^3 - t^2 + t + 7, -t^3 + 5t - 2, 3t^3 + t^2 - 2t \rangle$$

- a. Compute the velocity vector.
- b. Compute the acceleration vector.
- c. What is the bug's position vector at 1 sec?
- d. What is the bug's velocity vector at 1 sec?
- e. What is the bug's speed at 1 sec? (Round to the nearest hundredth.)

3.
$$\mathbf{a}(t) = \langle 6, -2, 10 \rangle$$
 $\mathbf{v}(1) = \langle 6, 1, 14 \rangle$ $\mathbf{r}(1) = \langle 2, 6, 9 \rangle$

- a. Compute the velocity vector.
- b. Compute the position vector.
- c. What is the bug's position vector at 2 sec?
- d. What is the bug's velocity vector at 2 sec?
- e. What is the bug's speed at 2 sec? (Round to the nearest hundredth.)
- 4. $\mathbf{a}(t) = \langle 2, 6t, 4 \rangle$ $\mathbf{v}(2) = \langle -1, 10, 9 \rangle$ $\mathbf{r}(2) = \langle 5, -1, 2 \rangle$
 - a. Compute the velocity vector.
 - b. Compute the position vector.
 - c. What is the bug's position vector at 1 sec?
 - d. What is the bug's velocity vector at 1 sec?
 - e. What is the bug's speed at 1 sec? (Round to the nearest hundredth.)
- 5. $\mathbf{r}(t) = \langle \cos t, \sin t, 2t \rangle$ Find the bug's total distance traveled over the time interval [1, 20]. (Round to the nearest hundredth.)
- 6. $\mathbf{r}(t) = \langle t, 4\sqrt{t}, 2 \ln t \rangle$ Find the bug's total distance traveled over the time interval [2, 8]. (Round to the nearest hundredth.)

Bug 15 – Homework Answers

1. a. $\mathbf{v}(t) = \langle 2t - 3, 4t, -3 \rangle$ b. $\mathbf{a}(t) = \langle 2, 4, 0 \rangle$ c. $\langle -2, 9, -4 \rangle$ d. $\langle 1, 8, -3 \rangle$ e. 8.60 ft/sec

2. a.
$$\mathbf{v}(t) = \langle 6t^2 - 2t + 1, -3t^2 + 5, 9t^2 + 2t - 2 \rangle$$

b. $\mathbf{a}(t) = \langle 12t - 2, -6t, 18t + 2 \rangle$
c. $\langle 9, 2, 2 \rangle$
d. $\langle 5, 2, 9 \rangle$
e. 10.49 ft/sec

3. a.
$$\mathbf{v}(t) = \langle 6t, -2t + 3, 10t + 4 \rangle$$

b. $\mathbf{r}(t) = \langle 3t^2 - 1, -t^2 + 3t + 4, 5t^2 + 4t \rangle$
c. $\langle 11, 6, 28 \rangle$
d. $\langle 12, -1, 24 \rangle$
e. 26.85 ft/sec

4. a.
$$\mathbf{v}(t) = \langle 2t - 5, 3t^2 - 2, 4t + 1 \rangle$$

b. $\mathbf{r}(t) = \langle t^2 - 5t + 11, t^3 - 2t - 5, 2t^2 + t - 8 \rangle$
c. $\langle 7, -6, -5 \rangle$
d. $\langle -3, 1, 5 \rangle$
e. 5.92 ft/sec

- 5. 42.49 ft
- 6. 8.77 ft

Bug 16 – Homework

Suppose a bug is moving in 2-space. At time t sec, his position is (x ft, y ft).

Let the bug's position vector be denoted by $\mathbf{r}(t)$.

Is the bug speeding up or slowing down at t = -1, and by how much?

Round to the nearest hundredth.

1.
$$\mathbf{r}(t) = \left\langle \frac{1}{t}, \frac{t^2}{2} \right\rangle$$

2.
$$\mathbf{r}(t) = \left\langle \frac{1}{e^t}, e^t \right\rangle$$

1. speeding up by 0.71 ft/s^2 2. slowing down by 2.64 ft/s^2