 Neither Div nor Curl nor Both Constitute the Derivative




Charles S. Barnett

Adjunct Mathematics Instructor

Las Positas College











Presented at the 41st annual fall conference
California Mathematics Council, Community Colleges
Monterey, California
December 13 and 14, 2013





Abstract

The Div and Curl operators are derivative-like but are only aspects of the derivative of a map from 3-space to 3-space. The derivative of such a given map is a linear map from 3-space to 3-space. By employing the Frechet difference quotient at the outset, we can construct that derivative without use of the heavy machinery of advanced analysis. The process, results, and properties parallel those of the one-dimensional case.
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Outline


· Alternate definition of the derivative of a real-valued function of a real variable (the  case)

· The Frechet derivative of a scalar-valued function of a vector (the  case)

· The Frechet derivative of a vector-valued function of a vector (the  case)

· The divergence and curl of a vector field

· An application: the divergence and curl of a steady flow

· Generalizations and the chain rule






Scalar-valued Functions of a Scalar (1)

Situation:  represents the real numbers. .

Goal: Define the derivative of  at  .

For  consider the following limit:



If this limit exists, then  is called “the derivative of  at  with respect to ”









Scalar-valued Functions of a Scalar (2)

Claim:  is linear in the variable 

Pick and fix  in  and consider . Show first that  = . Well,



	


                         


                           .

Therefore, 
Scalar-valued Functions of a Scalar (3)

Now let  and  denote two non-zero elements of  and consider .



for some 





               

              

              .               
                                                                           
So,  is linear in the second variable.
Scalar-valued Functions of a Scalar (4)

Definition: 

The derivative of  at , denoted by , is the linear map from   defined by


Examples (old chestnuts in new shells):

1.  is a constant function, , where  is a constant. Then , i.e. , sends all  to zero for every    

Argument: .

2.  is a linear map, i.e., , where  is an arbitrary but fixed number.

Then  is a constant map, i.e., 

 for every .

	Argument: .
Scalar-valued Functions of a Scalar (5)

Examples (old chestnuts in new shells), cont’d:

3.  implies that , i.e.,

  all 

Argument: 

                     

                     

Now, divide by  and pass to the limit to see that

           .





Scalar-valued Functions of a Scalar (6)

Best affine approximation to 

Pick and fix . Then the mean value theorem says that

.                                                                                    

You will see direct parallels to this equation as we work our way up to functions from .   









Scalar-valued Functions of a Vector (1)

Situation: 

Goal: Define the derivative of  at , . For , consider the following limit that defines function .

          


If this limit exists, then  is called “the derivative of  at  with respect to ”.











Scalar-valued Functions of a Vector (2)

Claim:  is linear in the variable . 

First, show that  for .

Pick and fix  in . If , the difference quotient is . If , then





	






Scalar-valued Functions of a Vector (3)

Now, consider . We must show that ,
where

.

There exists a version of the mean value theorem that we will need:

If  exists for , then there exists  such that

                

This version can be established fairly easily from the standard  version.

In the proof of linearity for the  case I used the fact that for any two non-zero real numbers  there exists a third, , say, such that . The above  version  of the mean value theorem is used similarly to complete the proof of linearity for the present case. The details, somewhat involved, appear on page 5 of the handout.

So,  is linear in  for every .

Scalar-valued Functions of a Vector (4)

Definition:

The derivative  of  at  is the linear map 



defined by













Scalar-valued Functions of a Vector (5)

The Gradient

	Let 

	Expand  in the standard basis.

Invoke the fact that  is linear in  and expand  via ’s components 

Arrive at


A theorem from linear algebra says that if  is linear, then there exists a unique vector  such that 

So , which implies that 

Hence, 

Scalar-valued Functions of a Vector (6)

Observe that knowing  is equivalent to knowing , but  and

Best affine approximation to 

Pick and fix  Then

.

	Or, in terms of the gradient,



	






Vector-valued Functions of a Vector (1)

Situation: 

For , consider the following limit that defines :



if the limit exists.  

Examples:

1.  is a constant function.

		 for every .  is a fixed vector.
		
		Then .

		So, .


Vector-valued Functions of a Vector (2)

2.   is a linear map.

		, where  is linear.

		Then .

					.

Now, divide by  and pass to the limit to see that

 for all 


Vector-valued Functions of a Vector (3)

Claim:  is linear in the variable .

Let  represent the usual basis in . Then

 ,

where the  represent the component functions. Let  represent the derivative with respect to  of the component functions. Earlier I sketched an argument that showed that the  are linear in the variable . It can be shown that  inherits linearity in  from the . So,



is linear in the variable .

Definition: 

The derivative  of  at  is the linear transformation

defined by



Vector-valued Functions of a Vector (4)

Examples (restatement in terms of rather than ):

1. The derivative of a constant function is the zero vector. So  transforms all of  into the zero vector.
2. The derivative of a linear function is a constant.

 linear, implies that

		 for every .

Now we can get back to more familiar, classical ground.  is a linear map.  Given a basis, a linear map can be represented by a matrix relative to that basis. So, as above, let  represent the standard basis. Then

 ,

where the scalar-valued  are the component functions of .

Then

                                                                                                                                     
Vector-valued Functions of a Vector (5)

I have here invoked both the fact (shown earlier) that, for functions   and the linearity of  to arrive at Eqn..

Observe from Eqn.  that, relative to the standard basis,  is represented by 

 
where here and below I use   to indicate the matrix of  .

Best affine approximation to F

As in the previous  and cases, we have a best approximation via Taylor’s formula: 

Divergence and Curl of a Vector Field (1)

Given , then  is a linear map from . Linear maps may be broken into the sum of their symmetric and skew-symmetric parts.

Let  represent the adjoint of . Then


					and

 skew-symmetric part.                            	                            

Observe that  sum of the two parts.








Divergence and Curl of a Vector Field (2)

To simplify typography, until further notice let



Then the matrix representation of  is


and the matrix of  is




Divergence and Curl of a Vector Field (3)

Then a bit of matrix algebra leads to the matrix representations of  and 

They are











Divergence and Curl of a Vector Field (4)

Definition: 

The Divergence of  is a map , defined by



The Trace of  is equal to the sum of the roots of the characteristic polynomial of , a property of the linear map that is invariant to matrix representation. The trace of any linear map from  is equal to the sum of the diagonal elements of any matrix representation. Hence, the familiar version of the Divergence:





Observe also that 

Divergence and Curl of a Vector Field (5)

Definition: 

The Curl of  at  is defined by



How do we know that a vector that makes the right side of Eqn.  equal to the left-hand side exists? Well,  is a skew-symmetric transformation and item A5 of the Appendix of the handout asserts that such a vector exists for such maps; we name it . Also, according to A5, if the matrix of a skew-symmetric map looks like



then the vector at issue ( here) is

  



Divergence and Curl of a Vector Field (6)

Compare the matrix representation of  and you see that



or, in the usual notation,










Divergence and Curl of a Steady Flow: an application (1)

Consider a vector field  and the flow induced by the differential equation



Note that time does not appear on the right hand side of Eqn. , hence “steady flow.”

Pick and fix . Expand  around  via Taylor’s formula; substitute the result into Eqn.  to yield



Split  into the sum of its symmetric and skew-symmetric components



and substitute into Eqn.  to obtain


Divergence and Curl of a Steady Flow: an application (2)

Now, consider the motion of the points within a small sphere centered at  at time zero, say. How has that spherical test ball changed in a small time ? The terms on the right-hand side yield an approximate answer.

Consider first the motion induced by





Equation  says that the test ball rotates about an axis through  parallel to  with angular velocity . That motion is volume-preserving.



Divergence and Curl of a Steady Flow: an application (3)

Consider next the motion described by



 is a symmetric map centered at  . Let  represent its eigenvalues and  denote the corresponding orthonormal set of eigenvectors. Then the corresponding eigenvalues of the flow described by Eqn.  are . That flow distorts the spherical ball slightly into an ellipsoid. The volume of the ball changes by a factor that is the determinant of the transformation. That determinant is  and its time rate of change when  is .

Finally, consider the motion induced by



Equation  says that the ellipsoid experiences a small translation with velocity vector .


The General  Case and the Chain Rule (1)

The chain rule is so important in differential calculus that its multidimensional version deserves a brief discussion. Before doing so, I point out that our restriction to the  case above was not necessary; I invoked the restriction because of the emphasis on the undergraduate calculus sequence.

Let  and  represent natural numbers and consider . If  is differentiable at , then its derivative can be defined via the Frechet difference quotient just as we did in the earlier cases. The process is identical to the one used for the  case. The derivative is a linear transformation as before, and all goes through except the discussion of the Curl, which is unique to the three-dimensional case. With this generalization all cases are subsumed, again except for the Curl, by this general case.









The General  Case and the Chain Rule (2)

Consider now the chain rule in the general case. Let  and  represent natural numbers. Situation:  is differentiable at , and  is differentiable at , then  is differentiable at  and



where  represents function composition. Observe that in Eqn.   is a linear map and  is a linear map; hence the composition of the two maps is a linear map, and all is well. Use brackets to denote matrix representation, and the matrix version of Eqn.  becomes




The General  Case and the Chain Rule (3)


Recall the one-variable chain rule.





where the juxtaposition on the right-hand side of Eqn  denotes multiplication, but could just as well have been written



[bookmark: _GoBack]because, in the one-dimensional case, composition of linear functions is multiplication. Compare Eqn.  and Eqn.  and you see that Eqn.  is just a special case of Eqn. . 







Nerd’s Bumper Sticker

And God said


									






and there was light.








Closure

· The derivative is a linear map.

· The Divergence and Curl are aspects of that map that account for about 4/9 of its properties, an especially important fraction in applications.


________________________________________________________________________






“Some people can stay longer in an hour than others can in a week.”


William Dean Howells, American novelist, 1837-1920
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