SOME IRRATIONALS I HAVE KNOWN

$\sqrt{2}$
and
π

Dr. Orval Klose

An Extraordinary Statement

"It may surprise you to learn that the set of irrationals is more numerous than the set of rationals."

The Number System

Ishango Bone
c. 20,000 в.с.

Lemombo Bone с. 35,000 в.с.

The Number System

$\{1,2,3, \ldots\}$
The Natural Numbers (\mathbb{N})
$\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
The Integers (\mathbb{Z})
$\left\{\left.\frac{a}{b} \right\rvert\, a\right.$ and b are integers and $\left.b \neq 0\right\}$
The Rational Numbers (\mathbb{Q})

The Number System

The naturals are a subset of the integers. $\mathbb{N} \subset \mathbb{Z}$
The integers are a subset of the rationals. $\quad \mathbb{Z} \subset \mathbb{Q}$

The Number System

Dense: Between any two fractions lies another.

The Number System

A Small Problem

Pythagoras of Samos c. 570 в.с. - с. 495 в.с.

A Small Problem

If $a=1$ then

$$
c^{2}=1^{2}+1^{2}=2
$$

and

$$
c=\sqrt{2}
$$

What kind of number

$$
a^{2}+a^{2}=c^{2}
$$

A Small Problem

Hippasus

Proof That $\sqrt{2}$ is Not Rational

Assume that $\sqrt{2}=\frac{N}{D}$, where N and D have no common factor. Then $2 D^{2}=N^{2}$.

Proof That $\sqrt{2}$ is Not Rational

Assume that $\sqrt{2}=\frac{N}{D}$, where N and D have no common factor. Then $2 D^{2}=N^{2}$.

So, $b^{2}=a^{2}+a^{2}=2 a^{2}$
Contradiction! $\sqrt{2} \notin \mathbb{Q}$

A Small Problem

"Alogos"

Pythagoras of Samos

 c. 570 в.с. - c. 495 в.c.

Humor in Mathematics?

"We have reason to believe that Martin himself is an irrational number!"

The Golden Ratio

The Golden Ratio

OTHER CONSTANTS

The Golden Rectangle:
A rectangle with the property that the removal of a square results in a new rectangle that has the same proportions as the original.

$$
\begin{aligned}
\frac{x}{1} & =\frac{1}{x-1} \\
x^{2}-x & =1 \\
x^{2}-x-1 & =0
\end{aligned}
$$

$$
x=\frac{1 \pm \sqrt{1-4(-1)}}{2}=\frac{1 \pm \sqrt{5}}{2} \approx 1.618 \ldots=\phi
$$

A Small Problem

Theorem: If k is not a perfect square, then $\sqrt{k} \notin \mathbb{Q}$.

The Golden Ratio: $\quad \phi=\frac{1+\sqrt{5}}{2} \notin \mathbb{Q}$

Theorem:
If k is not a perfect nth power, then $\sqrt[n]{k} \notin \mathbb{Q}$.

A Famous Irrational $-e$

Consider the expression: $(1+1 / n)^{n}$

$$
\begin{array}{rl}
n & (1+1 / n)^{n} \\
\hline 1 & 2 \\
10 & 2.59374 \\
100 & 2.70481 \\
1000 & 2.71692 \\
10000 & 2.71815 \\
\lim _{n \rightarrow \infty}(1+1 / n)^{n}=e \approx 2.718281828459045 \ldots
\end{array}
$$

A Famous Irrational $-e$

Proved the irrationality of e and e^{2} in 1737.

$$
e=2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{4+\frac{1}{1+\ddots}}}}}}
$$

Leonard Euler I707-I783

A Proof of the Irrationality of e

Assume that $e=\frac{N}{D}$, where N and D have no common factor.

Recall: $e=\sum_{n=0}^{\infty} \frac{1}{n!}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots$

Then we have:

$$
\frac{N}{D}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{D!}+\sum_{n=D+1}^{\infty} \frac{1}{n!}
$$

A Proof of the Irrationality of e

$$
\frac{N}{D}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{D!}+\sum_{n=D+1}^{\infty} \frac{1}{n!}
$$

Multiply both sides by D ! to get

$$
N(D-1)!=D!+\frac{D!}{1!}+\frac{D!}{2!}+\frac{D!}{3!}+\cdots+\frac{D!}{D!}+\sum_{n=D+1}^{\infty} \frac{D!}{n!}
$$

Note that $N(D-1)$! is an integer, as are the terms
before $\sum_{n=D+1}^{\infty} \frac{D!}{n!}$. Thus, $\sum_{n=D+1}^{\infty} \frac{D!}{n!}$ is an integer.

A Proof of the Irrationality of e

But,

$$
\begin{aligned}
\sum_{n=D+1}^{\infty} \frac{D!}{n!} & =\frac{1}{D+1}+\frac{1}{(D+1)(D+2)}+\frac{1}{(D+1)(D+2)(D+3)}+\cdots \\
& <\frac{1}{D+1}+\frac{1}{(D+1)^{2}}+\frac{1}{(D+1)^{3}}+\cdots
\end{aligned}
$$

This last sum is a geometric series and

$$
\frac{1}{D+1}+\frac{1}{(D+1)^{2}}+\frac{1}{(D+1)^{3}}+\cdots=\frac{\overline{D+1}}{1-\frac{1}{D+1}}=\frac{1}{D}
$$

A Proof of the Irrationality of e

This means that $0<\sum_{n=D+1}^{\infty} \frac{D!}{n!}<\frac{1}{D}$.
Thus $\sum_{n=D+1}^{\infty} \frac{D!}{n!}$ cannot be an integer, as shown
earlier. Contradiction! Hence, $e \notin \mathbb{Q}$.
Also, $\sin (1 / n), \cos (1 / n)$, and $e^{1 / n} \notin \mathbb{Q}$ for every positive integer n.

Another Famous Irrational $-\pi$

Showed that:
If x is a rational number other than zero, the value of $\tan (x)$ is irrational.

Since $\tan (\pi / 4)=1$, it follows that $\pi / 4$ and hence π is
 irrational.

Another Famous Irrational $-\pi$

Showed that:
If x is a rational number other than zero, the value of $\tan (x)$ is irrational.

This result was extended to include the irrationality of
 $\sin x, \cos x$, and e^{x} for all rational $x \neq 0$.

Dr. Orval Klose

An Extraordinary Statement

"It may surprise you to learn that the set of irrationals is more numerous than the set of rationals."

The Infinities of Georg Cantor

Georg Cantor 1845-1918

 kind of infinity.

The Infinities of Georg Cantor

Set: A collection of objects.

$$
\begin{aligned}
& \{a, b, c, \ldots, z\} \\
& \{1,2,3, \ldots\}
\end{aligned}
$$

Cardinality: The number of elements in a set.

Georg Cantor 1845-1918

Notation: $n(A)$
Example: $n(\{a, b, c, \ldots, z\})=26$

The Infinities of Georg Cantor

One-to-one correspondence:

A rule that assigns to each element of one set, one and only one element of a second set, with no element omitted.

$$
\begin{gathered}
\{1,2,3,4,5\} \\
\uparrow \uparrow \uparrow \downarrow \\
\{a, e, i, o, u\}
\end{gathered}
$$

The Infinities of Georg Cantor

One-to-one correspondence:

A rule that assigns to each element of one set, one and only one element of a second set, with no element omitted.

$$
\begin{aligned}
& \{1,2,3,4,5, \ldots\} \\
& \uparrow \downarrow \downarrow \downarrow \downarrow \\
& \{2,4,6,8,10, \ldots\}
\end{aligned}
$$

The Infinities of Georg Cantor

Discourses Concerning the Two
New Sciences (1638)

$$
\{1,2,3,4,5, \ldots\}
$$

$$
11111
$$

$$
\{1,4,9,16,25, \ldots\}
$$

Galileo Galilei
1564-1642

"So far as I see, we can only infer that the number of squares is infinite and the number of their roots is infinite."

The Infinities of Georg Cantor

Postulate:

Georg Cantor 1845-1918
Whenever two sets - finite or infinite - can be matched by a one-to-one correspondence, they have the same number of elements.

$$
\begin{aligned}
n(\{1,2,3, \ldots\}) & =n(\{2,4,6, \ldots\}) \\
& =n(\{1,4,9, \ldots\}) \\
& =n(\{\ldots,-3,-2,-1,0,1,2,3, \ldots\})
\end{aligned}
$$

The Infinities of Georg Cantor

Denumerable:

Any set that can be placed into a one-to-one correspondence with the natural numbers.

Examples:

The even numbers, the squares, the integers, the primes and the rationals!

The Infinities of Georg Cantor

Notation: $\quad n(\mathbb{N})=\aleph_{0} \quad$ (aleph-null)

Thus, $\quad n(\mathbb{N})=n(\mathbb{Z})=n(\mathbb{Q})=\aleph_{0}$

The real number line: \mathbb{R}

Cantor showed: $n(\mathbb{N})<n(\mathbb{R})=c$ (continuum)

The Infinities of Georg Cantor

Now, Reals $=$ Rationals \cup Irrationals and n (Rationals) $=\aleph_{0}$.

But $n($ Reals $)=c>\boldsymbol{\aleph}_{0}$, so n (Irrationals) $>\boldsymbol{\aleph}_{0}$.
Thus, n (Irrationals) $>n$ (Rationals).

The Irrational Hall of Fame

ϕ

Algebraic Numbers

Algebraic: A number that is a solution to a polynomial equation with integer coefficients.

$$
\begin{array}{ccc}
\frac{a}{b} & \longrightarrow & b x-a=0 \\
\sqrt{7} & \longrightarrow & x^{2}-7=0 \\
2+\sqrt{3} & \longrightarrow & x^{2}-4 x+1=0 \\
\sqrt[3]{-2+\sqrt{6}} & \longrightarrow & x^{6}+4 x^{3}-2=0
\end{array}
$$

$\sqrt{2}$ and ϕ are algebraic

Algebraic Numbers

Algebraic: A number that is a solution to a polynomial equation with integer coefficients.

Are there any non-algebraic irrational numbers?

Non-Algebraic Numbers

Transcendental:

An irrational number that is not algebraic.

Liouville's constant:

$$
\begin{aligned}
\frac{1}{10^{1!}} & +\frac{1}{10^{2!}}+\frac{1}{10^{3!}}+\frac{1}{10^{4!}}+\cdots \\
& =0.110001000000000000000001000 \ldots
\end{aligned}
$$

Joseph Liouville I809-I882

Transcendental Numbers

Transcendental: An irrational number that is not algebraic.

Charles Hermite |822-|90|

e is transcendental
"I shall risk nothing on an attempt to prove the transcendence of π. If others undertake this enterprise, no one will be happier than I in their success. But believe me, it will not fail to cost them some effort."

Transcendental Numbers

Transcendental: An irrational number that is not algebraic.

Charles Hermite 1822-190|

e is transcendental
Ferdinand von Lindemann 1852-1939

π is transcendental

The Infinities of Georg Cantor

Reals $(\mathbb{R})=$ Algebraic $\left(\mathbb{R}_{A}\right) \cup$ Transcendentals
What about $n\left(\mathbb{R}_{A}\right)$ and $n($ Transcendentals)?

In 1874 Cantor showed that $n\left(\mathbb{R}_{A}\right)=\aleph_{0}$.
Hence, $n($ Transcendentals $)>\boldsymbol{\aleph}_{0}$.
Thus, most real numbers are irrational and most irrational numbers are transcendental!

The Real Number System

The Property of Closure

The sum of any two natural numbers is another natural number.

The naturals are closed under addition.

The integers are closed under subtraction.

The Property of Closure

Rational

$$
\begin{array}{rlr}
\sqrt{2}-\sqrt{2}=0 & \sqrt{3}+\sqrt{3}=2 \sqrt{3} \\
\sqrt{3} \cdot \sqrt{12}=6 & \sqrt{7} \cdot \sqrt{3}=\sqrt{21} \\
\frac{\sqrt{24}}{\sqrt{6}}=2 & \frac{\sqrt{30}}{\sqrt{6}}=\sqrt{5}
\end{array}
$$

Irrational

The set of irrationals is not closed under the operations of addition, subtraction, multiplication and division.

The Property of Closure

The set of irrationals is not closed under the operations of addition, subtraction, multiplication and division.

What about exponentiation? a^{b}
If a and b are rational, then a^{b} may be either rational $9^{1 / 2}=3$ or irrational $2^{1 / 2}=\sqrt{2}$.

The rationals are not closed under exponentiation.

The Property of Closure

If a and b are rational, then a^{b} may be either rational or irrational.

The same is true if a and b are irrational.

Observation \# I: An irrational number to an irrational power may be rational.

The Property of Closure

Observation \# I: An irrational number to an irrational power may be rational.

To show this, we need an example a^{b} where a and b are irrational and a^{b} is rational.

If $\sqrt{2}^{\sqrt{2}}$ is rational, then it is our example.
If $\sqrt{2}^{\sqrt{2}}$ is irrational, then $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{2}=2$ is our example. Q.E.D.

The Property of Closure

Observation \#2: An irrational number to an irrational power may be irrational.

To show this, we need an example a^{b} where a and b are irrational and a^{b} is irrational.

If $\sqrt{2}^{\sqrt{2}}$ is irrational, then it is our example.
If $\sqrt{2}^{\sqrt{2}}$ is rational, then $\sqrt{2}^{\sqrt{2}+1}=\sqrt{2}^{\sqrt{2}} \sqrt{2}$ is our example. Q.E.D.

The Property of Closure

Is $\sqrt{2}^{\sqrt{2}}$ rational or irrational?
In 1930, Rodion Kuzmin proved that $2^{\sqrt{2}}$ is a transcendental number.

But $\sqrt{2}^{\sqrt{2}}=\sqrt{2^{\sqrt{2}}}$, so $\sqrt{2}^{\sqrt{2}}$ is irrational.

Algebraic or Transcendental?

Conjecture:

David Hilbert I862-I943
If a and b are algebraic numbers with a not equal to 0 or 1 , and if b is not a rational number, then the number a^{b} is transcendental.

Proved by Aleksandr Gelfand and Theodor Schneider, independently, in 1934.

Algebraic or Transcendental?

Gelfand-Schneider theorem

If a and b are algebraic numbers with a not equal to 0 or 1 , and if b is not a rational number, then the number a^{b} is transcendental.
From this it follows that $2^{\sqrt{2}}$ and $\sqrt{2}^{\sqrt{2}}$ are transcendental.

Also that e^{π} is transcendental.

Algebraic or Transcendental?

Gelfand-Schneider theorem

If a and b are algebraic numbers with a not equal to 0 or 1 , and if b is not a rational number, then the number a^{b} is transcendental.
From this it follows that $2^{\sqrt{2}}$ and $\sqrt{2}^{\sqrt{2}}$ are transcendental.
Also that $e^{\pi}=\left(e^{i \pi}\right)^{-i}=(-1)^{-i}$ is transcendental.
The classifications of π^{π}, π^{e}, and e^{e} are unknown.

Final Thoughts

Final Thoughts

Edward Titchmarsh I888-1963

"It can be of no practical use to know that Pi is irrational, but if we can know, it surely would be intolerable not to know."

SOME IRRATIONALS I HAVE KNOWN

Some Irrationals I Have Known

John Martin Santa Rosa Junior College jmartín@santarosa.edu

My top ten favorite irrationals:

1. Pythagoras's Constant $\sqrt{2}$
2. The Golden Ratio ϕ
3. Archímedes's Constant π
4. The Base of the Natural Logarithm e
5. Liouville's Number 0.110001000000000000000001000
6. Hilbert's Number $2^{\sqrt{2}}$
7. Gelfond's Constant e^{π}
8. $i^{i}=e^{-\pi / 2}$
9. Apéry's constant $\zeta(3)=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$
10. Champernowne's number 0.123456789101112131415

Additional Topics to Explore
Gelfond-Schneider theorem
Transfinite Cardinals
Slides Used in the Presentation:
http://online.santarosa.edu/homepage/jmartin
Scroll to the bottom for a link to a folder containing a PDF of the slides.

